Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521426

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Ferroptosis , Saponinas , Triterpenos , Humanos , Ratones , Animales , Cisplatino/toxicidad , Simulación del Acoplamiento Molecular , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Saponinas/farmacología , Saponinas/uso terapéutico , Saponinas/química , Triterpenos/farmacología , Triterpenos/uso terapéutico , Triterpenos/química
2.
Front Pharmacol ; 13: 1009229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425580

RESUMEN

Rescuing endothelial cells from pyroptotic cell death emerges as a potential therapeutic strategy to combat diabetic atherosclerosis. Salvianolic acid A (SAA) is a major water-soluble phenolic acid in the Salvia miltiorrhiza Bunge, which has been used in traditional Chinese medicine (TCM) and health food products for a long time. This study investigated whether SAA-regulated pyruvate kinase M2 (PKM2) functions to protect endothelial cells. In streptozotocin (STZ)-induced diabetic ApoE-/- mice subjected to a Western diet, SAA attenuated atherosclerotic plaque formation and inhibited pathological changes in the aorta. In addition, SAA significantly prevented NLRP3 inflammasome activation and pyroptosis of endothelial cells in the diabetic atherosclerotic aortic sinus or those exposed to high glucose. Mechanistically, PKM2 was verified to be the main target of SAA. We further revealed that SAA directly interacts with PKM2 at its activator pocket, inhibits phosphorylation of Y105, and hinders the nuclear translocation of PKM2. Also, SAA consistently decreased high glucose-induced overproduction of lactate and partially lactate-dependent phosphorylation of PKR (a regulator of the NLRP3 inflammasome). Further assay on Phenylalanine (PKM2 activity inhibitor) proved that SAA exhibits the function in high glucose-induced pyroptosis of endothelial cells dependently on PKM2 regulation. Furthermore, an assay on c16 (inhibitor of PKR activity) with co-phenylalanine demonstrated that the regulation of the phosphorylated PKR partially drives PKM2-dependent SAA modulation of cell pyroptosis. Therefore, this article reports on the novel function of SAA in the pyroptosis of endothelial cells and diabetic atherosclerosis, which provides important insights into immunometabolism reprogramming that is important for diabetic cardiovascular disease complications therapy.

3.
J Hazard Mater ; 434: 128936, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35461002

RESUMEN

Carbonate-bound uranium (U) is critical in controlling the migration of U in circumneutral to alkaline conditions. The potential release risk of carbonate-bound U should be concerned due to the contribution of mineral replacement. Herein, we explored the fate of U during the conversion process from microbial-induced calcite to hydroxylapatite (HAP) and investigated the phase and morphology evolution of minerals and the immobilization efficiency, distribution, and stability of U. The results showed that most calcite could convert to HAP during the conversion process. The aqueous residual U was below 1.0 mg/L after U-HAP formation, and the U removal efficiencies were enhanced by 20.0-74.4% compared to the calcite precipitation process. XRD and TEM results showed that the products were a mixture of HAP and uramphite. The elemental mapping results showed that most U concentrated on uramphite while a handful of U distributed homogeneously in calcite and HAP matrixes. The stability test verified that U-bearing HAP decreased the U solubility by 98-100% relative to calcite due to the uramphite formation and U incorporation into HAP. Our findings demonstrated that the combinations of microbial-induced calcite precipitation and calcite-HAP conversion could facilitate the U immobilization in treating radioactive wastewater and soil.


Asunto(s)
Uranio , Carbonato de Calcio , Carbonatos , Durapatita , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA