Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 13: 1073922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36519164

RESUMEN

The COVID-19 pandemic has brought more attention to the immune system, the body's defense against infectious diseases. The immunomodulatory ability of traditional herbal medicine has been confirmed through clinical trial research, and has obvious advantages over prescription drugs due to its high number of potential targets and low toxicity. The active compounds of herbal drugs primarily include polysaccharides, saponins, flavonoids, and phenolics and can be modified to produce new active compounds after lactic acid bacteria (LAB) fermentation. LAB, primary source of probiotics, can produce additional immunomodulatory metabolites such as exopolysaccharides, short-chain fatty acids, and bacteriocins. Moreover, several compounds from herbal medicines can promote the growth and production of LAB-based immune active metabolites. Thus, LAB-mediated fermentation of herbal medicines has become a novel strategy for regulating human immune responses. The current review discusses the immunomodulatory properties and active compounds of LAB fermented herbal drugs, the interaction between LAB and herbal medicines, and changes in immunoregulatory components that occur during fermentation. This study also discusses the mechanisms by which LAB-fermented herbal medicines regulate the immune response, including activation of the innate or adaptive immune system and the maintenance of intestinal immune homeostasis.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35310032

RESUMEN

Ionizing radiation (IR) can cause radiation damage, mutagenesis, or carcinogenesis in the irradiated subject. It is manifested as metabolic disorders of the body and damage to the immune system, nervous system, and endocrine system, which can lead to physiological and pathological changes and endogenous metabolic disorders. Ginsenoside Re (G-Re), a single component of traditional Chinese medicine, has a certain ameliorating effect on radiation damage. However, its mechanism of action in the treatment of radiotherapy injury remains unclear. With this purpose, the hematopoietic function of mice damaged by X-ray radiation was studied, and the protective effect of G-Re on mice damaged by radiation was preliminarily evaluated. Network pharmacology and metabolomics analysis are used to further reveal the mechanism of G-Re to improve radiation damage through metabolomics research. Results of metabolomics analysis showed that 16 potential biomarkers were identified as participating in the therapeutic effect of G-Re on IR. Most of these metabolites are adjusted to recover after G-Re treatment. The pathways involved included glycerophospholipid metabolism, sphingolipid metabolism, and linoleic acid metabolism. According to network pharmacology analysis, we found 10 hub genes, which is partly consistent with the findings of metabolomics. Further comprehensive analysis focused on 4 key targets, including SRC, EGFR, AKT1, and MAPK8, and their related core metabolites and pathways. This study combines metabolomics and network pharmacology analysis to explore the key targets and mechanisms of G-Re in the treatment of IR, in order to provide new strategies for clinical treatment of radiotherapy injury.

3.
J Ethnopharmacol ; 258: 112814, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32251760

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum Polysaccharide (GLP),traditional Chinese medicine (TCM) active ingredient, has a long history and has good curative effects on radiation injury. However, the mechanism of GLP treating radiation injury has not been clearly elucidated. THE AIM OF THE STUDY: This study was aimed to investigate the preventive effects of GLP on mice with radiation injury and to explore its mechanisms by serum metabolomics. MATERIALS AND METHODS: Thirty mice were randomly divided into three groups,and namely 10 per group. The normal control group and the radiation model with normal saline and GLP group with GLP treatment (96 mg·kg-1) for 14 days. 2 h after 7th day after the intragastric administration, the model group and GLP group were subjected to whole body irradiation by X-rays except the normal control group. The peripheral blood WBC, RBC, HGB, PLT indicators.UPLC-Q-TOF-MS technique was used to analyze the serum of normal group, model group and GLP group, and to explore its potential key biomarkers and corresponding related metabolic pathways. RESULTS: The number of peripheral blood leukocytes (WBC) in the radiation model group was lower than that in the GLP group and the number of platelets (PLT) in the GLP group was significantly higher than that in the model group.Combined with the methods of principal component analysis (PCA), projection to latent structure-discrimination analysis (PLS-DA), three group were clearly distinguished from each other and 18 metabolites were identified as the potential biomarkers in the GLP treated mice. The identified biomarkers indicated that there were perturbations of the taurine and hypotaurine metabolism and glycerophospholipid metabolism. CONCLUSION: GLP can play a role in radiation protection by improving the expression of related potential biomarkers and related metabolic pathways in serum of radiation-induced mice.


Asunto(s)
Polisacáridos/farmacología , Traumatismos Experimentales por Radiación/prevención & control , Protectores contra Radiación/farmacología , Reishi/química , Animales , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Masculino , Espectrometría de Masas , Medicina Tradicional China , Metabolómica , Ratones , Ratones Endogámicos BALB C , Polisacáridos/aislamiento & purificación , Traumatismos Experimentales por Radiación/metabolismo , Protectores contra Radiación/aislamiento & purificación
4.
Food Funct ; 10(3): 1707-1717, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30839970

RESUMEN

Correlations between oxidative stress and degenerative diseases have been gaining increasing attention. A number of studies affirm that exopolysaccharide (EPS) produced by lactic acid bacteria (LAB) can alleviate oxidative stress and further prevent the related diseases. In our previous study, Lactobacillus helveticus KLDS1.8701 has been shown to possess high antioxidant capacity in vitro. The aim of this study was to evaluate the ameliorative effects of EPS produced by L. helveticus KLDS1.8701 on oxidative stress. Firstly, EPS was isolated from the culture of L. helveticus KLDS1.8701 and purified using DEAE-Sepharose Fast Flow chromatography. Secondly, the antioxidant capacities of EPS fractions were evaluated using in vitro methods. Thirdly, an in vivo study was performed to investigate the possible protective effects of EPS on d-galactose (d-gal)-induced liver damage and gut microbiota disorder. In vitro antioxidant activity results suggested that EPS-1 exhibited strong scavenging properties on 2,2-diphenyl-1-picrylhydrazyl radical, superoxide radical, hydroxyl radical, and chelating activity on ferrous ion. In vivo, EPS-1 supplementation significantly attenuated oxidative status such as decreased organic index, liver injury and liver oxidative stress. EPS-1 supplementation shifted the gut microbiota composition to that of the control group. In addition, the analysis of Spearman's rank correlation suggested that the protective effects of EPS correlated with manipulating the gut microbiota composition in d-gal-induced mice. These results implied that EPS-1 supplementation could mitigate hepatic oxidative stress via manipulating the gut microbiota composition and be used as a potential candidate to attenuate oxidative damage.


Asunto(s)
Lactobacillus helveticus/metabolismo , Estrés Oxidativo/efectos de los fármacos , Polisacáridos Bacterianos/farmacología , Animales , Compuestos de Bifenilo , Depuradores de Radicales Libres , Radical Hidroxilo , Hierro/química , Quelantes del Hierro , Lactobacillus helveticus/clasificación , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Picratos , Organismos Libres de Patógenos Específicos , Superóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA