Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 38(4): 1799-1814, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330236

RESUMEN

Futoquinol (Fut) is a compound extracted from Piper kadsura that has a nerve cell protection effect. However, it is unclear whether Fut has protective effects in Alzheimer's disease (AD). In this study, we aimed to explore the therapeutic effect of Fut in AD and its underlying mechanism. UPLC-MS/MS method was performed to quantify Fut in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42, Aß1-40, p-Tau, oxidative stress, apoptosis, immune cells, and inflammatory factors were measured in Aß25-35-induced mice. The content of bacterial meta-geometry was predicted in the microbial composition based on 16S rDNA. The protein levels of HK II, p-p38MAPK, and p38MAPK were detected. PC-12 cells were cultured in vitro, and glucose was added to activate glycolysis to further explore the mechanism of action of Fut intervention in AD. Fut improved the memory and learning ability of Aß25-35 mice, and reduced neuronal damage and the deposition of Aß and Tau proteins. Moreover, Fut reduced mitochondrial damage, the levels of oxidative stress, apoptosis, and inflammatory factors. Fut significantly inhibited the expression of HK II and p-p38MAPK proteins. The in vitro experiment showed that p38MAPK was activated and Fut action inhibited after adding 10 mM glucose. Fut might inhibit the activation of p38MAPK through the glycolysis pathway, thereby reducing oxidative stress, apoptosis, and inflammatory factors and improving Aß25-35-induced memory impairment in mice. These data provide pharmacological rationale for Fut in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Lignanos , Animales , Ratones , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apoptosis , Cromatografía Liquida , Microbioma Gastrointestinal/efectos de los fármacos , Glucosa/farmacología , Lignanos/farmacología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/metabolismo , Espectrometría de Masas en Tándem
2.
Phytomedicine ; 125: 155339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237513

RESUMEN

BACKGROUND: Salvia miltiorrhiza Bunge (Labiatae) (DS) is a key part of the traditional Chinese medicine, whose roots are used to remove blood stasis, relieve pain, eliminate carbuncle and calm the nerves. Our research team found that the DS extract could significantly reverse LPS-induced lung injury, and five new diterpenoid quinones in DS extract with excellent lung protective activity for the first time. However, the material basis and mechanism of DS on pulmonary fibrosis (PF) needs to be explored in depth. OBJECTIVE: Bleomycin (BLM) was employed to establish the PF model, and Transcriptome and Surface plasmon resonance (SPR) ligand fishing technology were used to explore the material basis and mechanism of DS on PF, and provided theoretical research for clinical treatment of PF. METHODS: DS extract (24.58 or 49.16 mg/kg, i.g.) was administered daily from Day 8 to Day 28, followed by intratracheal BLM drip (5 mg/kg) to induce PF. Data about the influences of DS on PF were collected by transcriptome sequencing technology. Pulmonary ultrasound, airway responsiveness, lung damage, collagen deposition, and the levels of TNF-α, IL-1ß, apoptosis, oxidative stress (OS), immune cells, TGF-ß1, α-SMA, E-Cadherin and Collage Ⅰ were examined. The affinity component (Przewalskin) in DS extract targeted by TGF-ß1 was fished by SPR ligand fishing technology. Furthermore, an in vivo PF mouse model and an in vitro TGF-ß1 induced BEAS-2B cell model were established, to explore the mechanism of Przewalskin on PF from the apoptosis, OS and epithelial mesenchymal transformation pathway. RESULTS: DS extract improved pulmonary ultrasound, reduced lung damage and collagen deposition, downregulated TNF-α, IL-1ß, apoptosis, OS, TGF-ß1, α-SMA, E-Cadherin and Collage Ⅰ, transformed immune cells following Bleomycin challenge. Furthermore, affinity component (Przewalskin) also improved pulmonary ultrasound and airway responsiveness, reduced lung damage and collagen deposition, downregulated TNF-α, IL-1ß, apoptosis, OS in vivo and in vitro. CONCLUSION: Analysis using a mouse model revealed that DS extract and Przewalskin can relieve clinical symptoms of PF, reduce lung injury and improve lung function. Meanwhile, DS extract and Przewalskin can improve BLM-induced PF by inhibition of, OS, apoptosis and collagen deposition might via the TGF-ß1 pathway. This study provides references to identification of novel therapeutic targets, thereby facilitating drug development for PF.


Asunto(s)
Lesión Pulmonar , Fibrosis Pulmonar , Salvia miltiorrhiza , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Bleomicina , Ligandos , Pulmón/patología , Colágeno/metabolismo , Estrés Oxidativo , Apoptosis , Cadherinas/metabolismo
3.
Phytomedicine ; 125: 155353, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241918

RESUMEN

BACKGROUND: Acute liver injury (ALI) is a frequent fatal liver disease with a high mortality. Calenduloside E (CE) is a pentacyclic triterpenoid derived from Achyranthes bidentata Blume. It has been found that liver injury is associated with mitochondrial dysfunction, and activation of the AMPK-SIRT3 signaling pathway protects the mitochondrial function to play a role in resistance to the disease. However, whether CE is protective against ALI through the AMPK-SIRT3 signaling pathway is unclear. PURPOSE: To clarify the influences of Calenduloside E (CE) isolated from Achyranthes bidentata Blume on LPS/D-GalN-induced Acute liver injury (ALI). METHODS: A mouse model of ALI was developed, intraperitoneal injection of 10 µg/kg LPS and 700 mg/kg D-GalN, histopathological, oxidative stress, and immune inflammation of the mice were monitored. The mechanism of CE influencing liver injury was investigated by examining the gut microbiota, mitochondrial dysfunction, and the AMPK-SIRT3 signaling pathway. The antagonistic effects of specific AMPK and SIRT3 blocker, as well as AMPKα1, AMPKα2, SIRT3 transfection-mediated silencing were investigated to confirm the role of the AMPK-SIRT3 signaling pathway in this process. RESULTS: CE relieved liver pathological damage of mice and led to reduced oxidative stress and immune inflammation in mice, affected the balance of gut microbiota in mice with liver injury, as well as energy metabolism, and regulated mRNA and protein expressions of AMPK-SIRT3 signaling pathway. In addition, in vitro studies showed that CE relieved mitochondrial respiratory and protein expressions of AMPK-SIRT3 signaling pathway in LPS/D-GalN-induced AML12 and LX2 cells, and such effect was blocked by AMPK and SIRT3 inhibitors. Furthermore, silencing of AMPKα1, AMPKα2, and SIRT3 blocked the effects of CE. Overall, the influences of CE on mice with liver injury is tuned by the AMPK-SIRT3 signaling pathway. CONCLUSION: CE mediates mitochondrial function and eventually regulate energy metabolism by regulating the AMPK-SIRT3 signaling pathway. The results of this study provide molecular evidences for application of CE in treatment of ALI and provide references to the drug development for ALI.


Asunto(s)
Achyranthes , Enfermedades Mitocondriales , Ácido Oleanólico/análogos & derivados , Saponinas , Sirtuina 3 , Sirtuina 3/metabolismo , Achyranthes/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Lipopolisacáridos/farmacología , Transducción de Señal , Hígado/metabolismo , Inflamación
4.
Phytomedicine ; 123: 155218, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37980806

RESUMEN

BACKGROUND: Sepsis-induced acute kidney injury (S-AKI) is an inflammatory disease with sex differences and there has no effective drugs to cure it. Frehmaglutin D (Fre D) and rehmaionoside C (Reh C) are two violetone compounds with estrogenic activity isolated from Rehmannia glutinosa. However, whether these two drugs exert protective effects on S-AKI through their estrogen-like activity are unclear. PURPOSE: This study aimed to explore the effects and mechanisms of Fre D and Reh C on lipopolysaccharide (LPS)-induced S-AKI through the estrogen receptor pathway in vivo and in vitro and to explore the interaction between ER and TLR4 for the first time. METHODS: The LPS-induced female BALB/c mice S-AKI mouse model was established by adding the estrogen receptor antagonist ICI182,780. Renal function, inflammation, oxidative stress, apoptosis, immune cells, and expression of key proteins of the ER-TLR4-IL-1ß pathway were tested. The affinity of Fre D and Reh C for the ER was investigated by molecular docking. Then, an in vitro S-AKI model was established, and ERα/ERß antagonists (MPP/PHTPP) were added and combined with gene overexpression techniques. The interaction between ER and TLR4 was further explored by Co-IP, GST pull-down and SPR techniques. RESULTS: Fre D and Reh C ameliorated LPS-induced renal damage, inflammation in mice, regulated the immune cells, decreased ROS levels, increased ERα and ERß protein expression, and decreased TLR4, caspase 11 and IL-1ß protein expression. These effects were blocked by ICI182,780. Molecular docking results showed that Fre D and Reh C bound ERα and ERß with similar potency. The results of in vitro suggested that Fre D and Reh C reduced the levels of inflammation, ROS and apoptosis, TLR4, caspase 11, and IL-1ß protein expression and increased ERα/ERß protein expression in cells. All of these effects were reversed by the addition of MPP/PHTPP and further enhanced after ERα/ERß gene overexpression with no significant difference in effects. Moreover, there was an indirect or direct interaction between ER and TLR4, and the binding of ERα and ERß to TLR4 was concentration dependent. CONCLUSION: Fre D and Reh C may improve S-AKI through the ER-TLR4-IL-1ß pathway and may act on both ERα and ERß receptors. Moreover, ERα and ERß may interact directly or indirectly with TLR4, which was studied for the first time.


Asunto(s)
Lesión Renal Aguda , Receptores de Estrógenos , Femenino , Masculino , Animales , Ratones , Receptores de Estrógenos/metabolismo , Lipopolisacáridos , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Receptor Toll-Like 4 , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Caspasas , Inflamación
5.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4046-4059, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802772

RESUMEN

The present study aimed to investigate the protective effect and underlying mechanism of Platycladi Semen oil(SP) on Aß_(25-35)-induced brain injury in mice to provide a theoretical basis for the clinical treatment of Alzheimer's disease(AD). Male Kunming(KM) mice were randomly divided into a control group, a model group(brain injection of Aß_(25-35), 200 µmol·L~(-1), 0.15 µL·g~(-1)), a positive drug group(donepezil, 10 mg·kg~(-1)), and low-and high-dose SP groups(0.5 and 1 mL·kg~(-1)). Learning and memory ability, neuronal damage, levels of Aß_(1-42)/Aß_(1-40), p-Tau, related indicators of apoptosis and oxidative stress, and immune cells, and protein and mRNA expression related to the sphingosine kinase 1(SPHK1)/sphingosine-1-phosphate(S1P)/sphingosine-1-phosphate receptor 5(S1PR5) signaling pathway of mice in each group were determined. In addition, compounds in SP were analyzed by gas chromatography-mass spectrometry(GC-MS). The mechanism of SP against AD was investigated by network pharmacology, 16S rDNA gene sequencing for gut microbiota(GM), and molecular docking techniques. The results showed that SP could improve the learning and memory function of Aß_(25-35)-induced mice, reduce hippocampal neuronal damage, decrease the levels of Aß_(1-42)/Aß_(1-40), p-Tau, and indicators related to apoptosis and oxidative stress in the brain, and maintain the homeostasis of immune cells and GM. Network pharmacology and sequencing analysis for GM showed that the therapeutic effect of SP on AD was associated with the sphingolipid signaling pathway. Meanwhile,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid, the components with the highest content in SP, showed good binding activity to SPHK1 and S1PR5. Therefore, it is inferred that SP exerts anti-apoptosis and antioxidant effects by regulating GM and inhibiting SPHK1/S1P/S1PR5 pathway, thereby improving brain injury induced by Aß_(25-35) in mice. Moreover,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid may be the material basis for the anti-AD effect of SP.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Encefálicas , Microbioma Gastrointestinal , Ratones , Animales , Masculino , Semen/metabolismo , Farmacología en Red , Ácido Linoleico , Simulación del Acoplamiento Molecular , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética
6.
Mol Immunol ; 152: 14-26, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36215828

RESUMEN

AIMS: This study aimed to investigate the anti-asthma effects of Ephedrae Herba polysaccharides (PE) and possible mechanisms related to immune inflammatory response. METHODS: An asthma model was established in rats using ovalbumin (OVA). Seventy rats were randomly assigned to five groups: control, model, dexamethasone (DEX, 0.075 mg/kg), low dose polysaccharides (LPE, 137.71 mg/kg) and high dose polysaccharides (HPE, 275.42 mg/kg). The cough and asthma were used to evaluate the basic state of asthmatic rats. Histological studies were evaluated by hematoxylin and eosin (H&E), Masson, and periodic acid-schiff (PAS) staining. The levels of interferon-γ (IFN-γ), interleukin (IL)-4, immunoglobulin E (IgE), tumor necrosis factor α (TNF-α), and IL-17A in bronchoalveolar lavage fluid (BALF), and the levels of transforming growth factor ß1 (TGF-ß1), IL-6, and IL-10 in serum were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA levels of Ifn-γ, Il-4, Tgf-ß1, Il-6, Il-10, Tnf-α, Il-13, and Il-17a were evaluated by quantitative real-time reverse transcription (qRT)-PCR. The dendritic cell (DCs), T helper cell (Th), natural killer cell (NK), regulatory T cell (Treg), and Th17 cells in blood, the lymphocytes, macrophages and neutrophils in spleen, and cell apoptosis and reactive oxygen species (ROS) in lung were analysed by flow cytometry (FCM). Immunohistochemistry (IHC) was used to stain DCs (CD11c+, CD86+, and CD80+), macrophages (CD68+), and neutrophils (MPO+) in the spleen and lung. The protein levels of IL-17A, CD11c, CD86, and CD80 in lung were measured by western blot. RESULTS: Our study demonstrated that PE could effectively improve the symptoms of asthmatic rats, ameliorate the lung pathological injury, inhibit inflammation, apoptosis and oxidative stress, regulate the levels of macrophages, neutrophils, DCs, NK, Thc, Treg and Th17 cells. CONCLUSION: PE could collectively inhibit the inflammation, apoptosis and ROS in asthma rats induced by OVA via regulating Th1/Th2 and Th17/Treg cell immune imbalance.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Polisacáridos , Linfocitos T Reguladores , Animales , Ratones , Ratas , Asma/inducido químicamente , Asma/tratamiento farmacológico , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Inflamación , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Pulmón/patología , Ratones Endogámicos BALB C , Polisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Th17 , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Fitoquímicos/farmacología , Medicamentos Herbarios Chinos/farmacología
7.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4996-5007, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164910

RESUMEN

This study aims to investigate mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination(MT) in the treatment of bronchial asthma based on network pharmacology and in vivo experiment, which is expected to lay a theoretical basis for clinical application of the combination. First, the potential targets of MT in the treatment of bronchial asthma were predicted based on network pharmacology, and the "Chinese medicine-active component-target-pathway-disease" network was constructed, followed by Gene Oncology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the potential targets. Molecular docking was used to determine the binding activity of key candidate active components to hub genes. Ovalbumin(OVA, intraperitoneal injection for sensitization and nebulization for excitation) was used to induce bronchial asthma in rats. Rats were classified into control group(CON), model group(M), dexamethasone group(DEX, 0.075 mg·kg~(-1)), and MT(1∶1.5) group. Hematoxylin and eosin(HE), Masson, and periodic acid-Schiff(PAS) staining were performed to observe the effect of MT on pathological changes of lungs and trachea and goblet cell proliferation in asthma rats. The levels of transforming growth factor(TGF)-ß1, interleukin(IL)6, and IL10 in rat serum were detected by enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein levels of mitogen-activated protein kinase 8(MAPK8), cyclin D1(CCND1), IL6, epidermal growth factor receptor(EGFR), phosphatidylinositol 3-kinase(PI3 K), and protein kinase B(Akt) by qRT-PCR and Western blot. Network pharmacology predicted that MAPK8, CCND1, IL6, and EGFR were the potential targets of MT in the treatment of asthma, which may be related to PI3 K/Akt signaling pathway. Quercetin and ß-sitosterol in MT acted on a lot of targets related to asthma, and molecular docking results showed that quercetin and ß-sitosterol had strong binding activity to MAPK, PI3 K, and Akt. In vivo experiment showed that MT could effectively alleviate the symptoms of OVA-induced asthma rats, improve the pathological changes of lung tissue, reduce the production of goblet cells, inhibit the inflammatory response of asthma rats, suppress the expression of MAPK8, CCND1, IL6, and EGFR, and regulate the PI3 K/Akt signaling pathway. Therefore, MT may relieve the symptoms and inhibit inflammation of asthma rats by regulating the PI3 K/Akt signaling pathway, and quercetin and ß-sitosterol are the candidate active components.


Asunto(s)
Asma , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Asma/tratamiento farmacológico , Ciclina D1 , Dexametasona/efectos adversos , Combinación de Medicamentos , Eosina Amarillenta-(YS)/efectos adversos , Ephedra , Receptores ErbB , Hematoxilina/uso terapéutico , Interleucina-10 , Interleucina-6 , Proteína Quinasa 8 Activada por Mitógenos/uso terapéutico , Simulación del Acoplamiento Molecular , Farmacología en Red , Ovalbúmina/efectos adversos , Ácido Peryódico/efectos adversos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina , ARN Mensajero , Ratas
8.
Phytomedicine ; 101: 154114, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35489325

RESUMEN

BACKGROUND: Corallodiscus flabellata B. L. Burtt, a traditional Chinese folk medicine used for amnesia, can significantly improve brain injury; however, its active components and underlying mechanism of action remain unclear. OBJECTIVE: To examine the effects and underlying mechanism of action of Corallodiscus flabellata B. L. Burtt (SDC) extract and isolated isonuomioside A (isA) on Aß25-35-induced brain injury. METHODS: SDC extract (155 mg/kg, i.g.) or IsA (20 mg/kg, i.g.) was administered over a period of 4 weeks, following which brain injury was induced by Aß25-35 infusion (200 µM, 3 µl/20 g, i.c.v.). Network pharmacology research gathered existing data on the effects of SDC on Alzheimer's disease. Learning and memory ability, neuronal damage, and the levels of Aß1-42/Aß1-40, p-Tau, apoptosis, oxidative stress, autophagy, immune cells, NMDAR2B, p-CamK Ⅱ, and PKG were examined. Furthermore, the antagonistic effect of MK-801 (NMDA receptor blocker, 10 µM) in the presence of isA (10 µM) or SDC extract (20 µg/ml) was investigated in Aß25-35 (20 µM, 24 h)-induced PC-12 and N9 cells to evaluate whether the observed effects elicited by isA and SDC extract were mediated via the NMDAR2B/CamK Ⅱ/PKG pathway. RESULTS: IsA and SDC extract improved learning and memory ability, reduced neuronal damage, downregulated Aß1-42/Aß1-40, p-Tau, apoptosis, oxidative stress, and autophagy, transformed immune cells, and increased the expression levels of NMDAR2B, p-CamK Ⅱ, and PKG following Aß25-35 challenge. Moreover, MK-801 blocked the effects of isA and SDC extract on apoptosis, ROS levels, and autophagy in Aß25-35-induced N9 and PC-12 cells, indicating that isA and SDC extract likely exert neuroprotective effects via the NMDAR2B/CamK Ⅱ/PKG pathway. CONCLUSION: IsA and SDC extract ameliorate Aß25-35-induced brain injury by inhibiting apoptosis, oxidative stress, and autophagy, which likely occurs via the NMDAR2B/CamK Ⅱ/PKG pathway. These findings may help to elucidate new therapeutic targets and facilitate the development of drugs for the clinical treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Encefálicas , Fármacos Neuroprotectores , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Apoptosis , Autofagia , Maleato de Dizocilpina/efectos adversos , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Fragmentos de Péptidos/metabolismo , Extractos Vegetales/uso terapéutico , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Front Pharmacol ; 12: 622681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708130

RESUMEN

Lung cancer is the most leading cause of cancer mortality throughout the world, of which about 85% cases comprise the non-small cell lung cancer (NSCLC). Estrogen and estrogen receptors are known to be involved in the pathogenesis and development of lung cancer. Dioscorea oppositifolia L. is a traditional Chinese medicine and a nutritious food, and can be an excellent candidate as an anti-cancer agent owing to its estrogen-like effects. However, the stems and leaves of D. oppositifolia L. are piled up in the field as a waste, causing environmental pollution and waste of resources. In the present study, a new diphenylethane (D1) was isolated from the stems and leaves of D. oppositifolia L. It was observed that D1 reduced the cell viability, migration, energy metabolism, and induced apoptosis in the A549 cells. Mechanistic studies showed that D1 reduced the STAT3 nuclear localization and downregulated the expression of the STAT3 target genes like Mcl-1, Bcl-xL and MMP-2 that are involved in the cell survival and mobility. Moreover, our results indicated that D1 exhibited estrogenic activities mediated by ERß, and antagonising ERß decreased the cytotoxic effect of D1 in A549 cells. In addition, inhibition of the nuclear translocation of STAT3 did not interfere with the binding of D1 and ERß. However, after antagonizing ERß, the nuclear translocation of STAT3 increased, thereby demonstrating that STAT3 was the downstream signaling molecule of ERß. In conclusion, the D1 mediated anti-NSCLC in vitro effects or at least in part can be attributed to the ERß-STAT3 signaling. Our findings suggest the role of D1 in treating NSCLC on a molecular level, and can help to improve the comprehensive utilization rate of D. oppositifolia L.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA