Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36512405

RESUMEN

Disuse osteoporosis is a metabolic bone disease resulting from skeletal unloading (e.g., during extended bed rest, limb immobilization, and spaceflight), and the slow and insufficient bone recovery during reambulation remains an unresolved medical challenge. Here, we demonstrated that loading-induced increase in bone architecture/strength was suppressed in skeletons previously exposed to unloading. This reduction in bone mechanosensitivity was directly associated with attenuated osteocytic Ca2+ oscillatory dynamics. The unloading-induced compromised osteocytic Ca2+ response to reloading resulted from the HIF-1α/PDK1 axis-mediated increase in glycolysis, and a subsequent reduction in ATP synthesis. HIF-1α also transcriptionally induced substantial glutaminase 2 expression and thereby glutamine addiction in osteocytes. Inhibition of glycolysis by blockade of PDK1 or glutamine supplementation restored the mechanosensitivity in those skeletons with previous unloading by fueling the tricarboxylic acid cycle and rescuing subsequent Ca2+ oscillations in osteocytes. Thus, we provide mechanistic insight into disuse-induced deterioration of bone mechanosensitivity and a promising therapeutic approach to accelerate bone recovery after long-duration disuse.


Asunto(s)
Calcio , Glutamina , Calcio/metabolismo , Glutamina/farmacología , Glutamina/metabolismo , Osteocitos/metabolismo , Glucosa/metabolismo , Metabolismo Energético
2.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R984-R993, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33759575

RESUMEN

Vitamin B12 deficiency has been shown to affect bone mass in rodents and negatively impact bone formation in humans. In this study using mouse models, we define the effect of B12 supplementation in the wild-type mother and B12 deficiency in a mouse genetic model (Gif-/- mice) during gestation on bone and muscle architecture and mechanical properties in the offspring. Analysis of bones from 4-wk-old offspring of the wild-type mother following vehicle or B12 supplementation during gestation (from embryonic day 0.5 to 20.5) showed an increase in bone mass caused by an isolated increase in bone formation in the B12-supplemented group compared with vehicle controls. Analysis of the effect of B12 deficiency in the mother in a mouse genetic model (Gif-/- mice) on the long bone architecture of the offspring showed a compromised cortical and trabecular bone mass, which was completely prevented by a single injection of B12 in the B12-deficient Gif-/- mothers. Biomechanical analysis of long bones of the offspring born from B12-supplemented wild-type mothers showed an increase in bone strength, and conversely, offspring born from B12-deficient Gif-/- mothers revealed a compromised bone strength, which could be rescued by a single injection of B12 in the B12-deficient Gif-/- mother. Muscle structure and function analysis however revealed no significant effect on muscle mass, structure, and grip strength of B12 deficiency or supplementation in Gif-/- mice compared with littermate controls. Together, these results demonstrate the beneficial effect of maternally derived B12 in the regulation of bone structure and function in the offspring.


Asunto(s)
Huesos/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Vitamina B 12/metabolismo , Animales , Densidad Ósea/fisiología , Suplementos Dietéticos , Femenino , Ratones , Embarazo , Vitaminas/metabolismo , Destete
3.
Neurotrauma Rep ; 2(1): 592-602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35018361

RESUMEN

The administration of high-dose methylprednisolone (MP) for 24-48 h after traumatic spinal cord injury (SCI) has been shown to improve functional recovery. The known adverse effects of MP on skeletal muscle and the immune system, though, have raised clinically relevant safety concerns. However, the effect of MP administration on SCI-induced bone loss has not been evaluated to date. This study examined the adverse effects of high-dose MP administration on skeletal bone after acute SCI in rodents. Male rats underwent spinal cord transection at T3-T4, which was followed by an intravenous injection of MP and subsequent infusion of MP for 24 h. At 2 days, animals were euthanized and hindlimb bone samples were collected. MP significantly reduced bone mineral density (-6.7%) and induced deterioration of bone microstructure (trabecular bone volume/tissue volume, -18.4%; trabecular number, -19.4%) in the distal femur of SCI rats. MP significantly increased expression in the hindlimb bones of osteoclastic genes receptor activator of nuclear factor-κB ligand (RANKL; +402%), triiodothyronine receptor auxiliary protein (+32%), calcitonin receptor (+41%), and reduced osteoprotegerin/RANKL ratio (-72%) compared to those of SCI-vehicle animals. Collectively, 1 day of high-dose MP at a dose comparable to the dosing regimen prescribed to patients who qualify to receive this treatment approach with acute SCI increased loss of bone mass and integrity below the level of lesion than that of animals that had SCI alone, and was associated with further elevation in the expression of genes involved in pathways associated with osteoclastic bone resorption than that observed in SCI animals.

4.
Genes Dev ; 24(20): 2330-42, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20952540

RESUMEN

Serotonin is a bioamine regulating bone mass accrual differently depending on its site of synthesis. It decreases accrual when synthesized in the gut, and increases it when synthesized in the brain. The signal transduction events elicited by gut-derived serotonin once it binds to the Htr1b receptor present on osteoblasts have been identified and culminate in cAMP response element-binding protein (CREB) regulation of osteoblast proliferation. In contrast, we do not know how brain-derived serotonin favors bone mass accrual following its binding to the Htr2c receptor on neurons of the hypothalamic ventromedial nucleus (VMH). We show here--through gene expression analysis, serotonin treatment of wild-type and Htr2c(-/-) hypothalamic explants, and cell-specific gene deletion in the mouse--that, following its binding to the Htr2c receptor on VMH neurons, serotonin uses a calmodulin kinase (CaMK)-dependent signaling cascade involving CaMKKß and CaMKIV to decrease the sympathetic tone and increase bone mass accrual. We further show that the transcriptional mediator of these events is CREB, whose phosphorylation on Ser 133 is increased by CaMKIV following serotonin treatment of hypothalamic explants. A microarray experiment identified two genes necessary for optimum sympathetic activity whose expression is regulated by CREB. These results provide a molecular understanding of how serotonin signals in hypothalamic neurons to regulate bone mass accrual and identify CREB as a critical determinant of this function, although through different mechanisms depending on the cell type, neuron, or osteoblast in which it is expressed.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas/metabolismo , Osteoblastos/metabolismo , Serotonina/metabolismo , Animales , Huesos/citología , Huesos/metabolismo , Encéfalo/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Hipotálamo/citología , Hipotálamo/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serotonina/farmacología
5.
Cell ; 138(5): 976-89, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737523

RESUMEN

Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Asunto(s)
Apetito , Densidad Ósea , Metabolismo Energético , Leptina/metabolismo , Serotonina/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Receptores de Leptina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA