Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biomed Pharmacother ; 163: 114870, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187019

RESUMEN

Ginsenosides are the major and key components for ginseng to exert its wide and beneficial therapeutic efficacy in clinic. Meanwhile, many ginsenosides and their metabolites showed in vitro an in vivo anti-tumor activity, among which ginsenoside Rb1 has attracted much attention due to its good solubility and amphipathy. In this study, the self-assembly behavior of Rb1 was investigated and the Rb1 nano-assembly could further stabilize or encapsulated hydrophobic drugs such as protopanaxadiol (PPD) and paclitaxel (PTX) to form nanoparticles, based on which, a natural nanoscale drug delivery system, ginsenoside Rb1 stabilized and PTX/PPD co-loaded nanoparticles (GPP NPs) were prepared. The resultant GPP NPs exhibited a small particle size of 126.2 nm, a narrow size distribution (PDI=0.145), and a zeta potential of -27.3 mV. PTX loading content was 11.06% with an encapsulation efficiency of 93.86%. GPP NPs were spherical and stable in normal saline, 5% glucose, PBS, plasma, or on-shelf storage for 7 days. Both PTX and PPD existed in an amorphous state in GPP NPs and were released in a sustained pattern. GPP NPs showed 10-fold higher in vitro anti-tumor activity of than PTX injections. In the in vivo experiment, GPP NPs achieved a much higher tumor inhibition rate than PTX injections (64.95% vs 43.17%, P < 0.01) and certain tumor target ability. In conclusion, GPP NPs had significantly enhanced anti-tumor efficacy and improved tumor microenvironment, thus were promising to be developed into a novel anti-tumor agent for the treatment of breast tumor.


Asunto(s)
Neoplasias de la Mama , Ginsenósidos , Nanopartículas , Humanos , Femenino , Paclitaxel , Ginsenósidos/farmacología , Nanopartículas/química , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral , Ubiquitina-Proteína Ligasas , Proteínas de Unión a Retinoblastoma
2.
Pharmaceutics ; 14(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893789

RESUMEN

Cannabidiol (CBD), a nonpsychoactive major component derived from Cannabis sativa, widely used in neurodegenerative diseases, has now been proven to have growth inhibitory effects on many tumor cell lines, including breast tumors. Meanwhile CBD can effectively alleviate cancer-associated pain, anxiety, and depression, especially tumor cachexia, thus it is very promising as an anti-tumor drug with unique advantages. 20(S)-Protopanaxadiol (PPD) derived from the best-known tonic Chinese herbal medicine Ginseng was designed to be co-loaded with CBD into liposomes to examine their synergistic tumor-inhibitory effect. The CBD-PPD co-loading liposomes (CP-liposomes) presented a mean particle size of 138.8 nm. Further glycosyl-modified CP-liposomes (GMCP-liposomes) were prepared by the incorporation of n-Dodecyl ß-D-maltoside (Mal) into the liposomal bilayer with glucose residue anchored on the surface to act as a ligand targeting the GLUT1 receptor highly expressed on tumor cells. In vivo studies on murine breast tumor (4T1 cells)-bearing BALB/c mice demonstrated good dose dependent anti-tumor efficacy of CP-liposomes. A high tumor inhibition rate (TIR) of 82.2% was achieved with good tolerance. However, glycosylation modification failed to significantly enhance TIR of CP-liposomes. In summary, combined therapy with PPD proved to be a promising strategy for CBD to be developed into a novel antitumor drug, with characteristics of effectiveness, good tolerance, and the potential to overcome tumor cachexia.

3.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164006

RESUMEN

Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method. The particle size, morphology, and drug-loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive effect significantly compared with the original NRG, the cough frequency was decreased from 22 to 15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s. Besides, NRG-NSps also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02 to 1.45 µg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG significantly and possess a potential clinical application.


Asunto(s)
Antitusígenos , Expectorantes , Flavanonas/farmacología , Animales , Antitusígenos/síntesis química , Antitusígenos/química , Antitusígenos/farmacología , Antitusígenos/uso terapéutico , Disponibilidad Biológica , Tos/tratamiento farmacológico , Tos/patología , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Liberación de Fármacos , Expectorantes/síntesis química , Expectorantes/química , Expectorantes/farmacología , Expectorantes/uso terapéutico , Flavanonas/síntesis química , Flavanonas/química , Flavanonas/uso terapéutico , Ratones , Nanopartículas , Tamaño de la Partícula , Solubilidad , Suspensiones
4.
Colloids Surf B Biointerfaces ; 213: 112426, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35219964

RESUMEN

ACGs (annonaceous acetogenins) possess excellent antitumor activity, but their serious accompanying toxicity has prevented their application in the clinic. To address this problem, we therefore constructed an intratumoral drug delivery system integrating chemotherapy and photothermal therapy. The PEGylation of polydopamine nanoparticles (PDA-PEG NPs) possessed an excellent biocompatibility with size of 70.96 ± 2.55 nm, thus can be used as good photothermal materials in the body. Moreover, PDA-PEG NPs can kill half of cancer cells under NIR (near-infrared) laser irradiation, and the survival rate of 4T1 cells is only 1% when ACG NPs and PDA-PEG NPs are combined. In vivo distribution studies showed that the 0.1 mg/kg ACGs NPs + PDA-PEG NPs + NIR group had the highest tumor inhibition rate, which was significantly superior to that of the 0.1 mg/kg ACGs NPs intratumoral injection group (82.65% vs. 59.08%). Altogether, the combination of PDA-PEG NPs + NIR with chemotherapy drugs may provide a feasible and effective strategy for the treatment of superficial tumors.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Acetogeninas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Humanos , Inyecciones Intralesiones , Fototerapia
5.
Nanotechnology ; 32(32)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33946061

RESUMEN

Pterostilbene (PTE) is known as resveratrol of the next generation and it has attracted extensive attention in recent years. PTE can inhibit the growth of a variety of tumor cells. To overcome the problem of insolubility, PTE was loaded into nanoparticles (NPs) by anti-solvent precipitation technique using soybean lecithin (SPC) and D-α-tocopheryl polyethylene glycol succinate (TPGS) as stabilizers. The obtained PTE-NPs had an average particle size of 71.0 nm, a polydispersity index (PDI) value of 0.258, and a high zeta potential of -40.8 mV. PTE-NPs can maintain particle size stability in various physiological media. The entrapment efficiency of PTE-NPs was 98.24%. And the apparently water solubility of PTE-NPs was about 53 times higher than the solubility of PTE (54.41µg ml-1v-1s-1. 2.89 mg ml-1). M-1T-1T-1assay showed that the antitumor activity of PTE-NPs on 4T1 breast cancer cells, MCF-7 breast cancer cells and Hela cervical cancer cells was significantly increased by 4, 6 and 8 times than that of free PTE, respectively.In vivostudies have shown that PTE-NPs has a certain dose dependence. When injected intraperitoneally, PTE-NPs showed a similar therapeutic effect as paclitaxel injection (TIR was 57.53% versus 57.23%) against 4T1 tumor-bearing mice. This should be due to the improved bioavailability of the drug caused by nano-drug delivery system (nano-DDS). These results indicate that PTE-NPs may be a clinically promising anti-tumor drug for breast cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas/química , Paclitaxel/farmacología , Estilbenos/farmacología , Animales , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Neoplasias de la Mama/patología , Composición de Medicamentos/métodos , Femenino , Células HeLa , Humanos , Lecitinas/química , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Paclitaxel/farmacocinética , Tamaño de la Partícula , Solubilidad , Estilbenos/farmacocinética , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Vitamina E/química , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Bioresour Technol ; 319: 124163, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254444

RESUMEN

Hydrothermal liquefaction (HTL) of Gracilaria corticata (GC) macroalgae was studied over a series of nickel-iron-layered double oxides (NiFe-LDO) supported on activated bio-char catalysts at 280 °C and different solvents medium. Maximum bio-oil yield (56.2 wt%) was found with 5%Ga/NiFe-LDO/AC catalyst at 280 °C under ethanol solvent. The catalytic HTL up-gradation decreased the bio-char yield significantly. However the bio-oil quality significantly improved with using the 5%Ga/NiFe-LDO/AC catalyst. Also, improved performance with higher amount of bio-oil and lower amounts of bio-char and gas were achieved, which is due the several reactions happening during the HTL process. Catalytic HTL also revealed that introducing NiFe-LDO nanosheets into the activated char could result in NiFe-LDO/AC catalysts of higher surface area and increased active sites. Being impregnated by 5%Ga, catalysts with improved acid sites and thereby, advanced deoxygenation and aromatization activities were achieved. Hence Ga/NiFe-LDO/AC could be considered as a promising catalyst HTL bio-oil upgrading.


Asunto(s)
Gracilaria , Algas Marinas , Biocombustibles , Biomasa , Aceites de Plantas , Polifenoles , Temperatura , Agua
7.
Drug Deliv ; 27(1): 1176-1187, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32762483

RESUMEN

Icaritin (ICT) and hydrous icaritin (HICT) are two similar flavonoids compounds isolated from Epimedium Genus. This is the first comparative study on their in vitro and in vivo antitumor effects. Nanorods (NRs) were prepared for ICT and HICT by anti-solvent precipitation method using D-alpha tocopherol acid polyethylene glycol succinate (TPGS) as a stabilizer. The prepared ICT-NRs and HICT-NRs had similar diameter (155.5 nm and 201.7 nm), high drug loading content (43.30 ± 0.22% and 41.08 ± 0.19%), excellent stability and a similar sustaining drug release manner. Nanorods improved the in vitro toxicity against 4 different cancer cells in contrast to free ICT or free HICT; however, no significant difference was observed in this regard between ICT-NRs and HICT NRs. In the in vivo study on the anticancer efficacy on MCF-7 and PLC/PRE/5 tumor-bearing mice model, HICR-NRs displayed certain advantage over ICT NRs with higher tumor inhibition rate.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Flavonoides/administración & dosificación , Flavonoides/farmacología , Nanotubos/química , Animales , Línea Celular Tumoral , Supervivencia Celular , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Incompatibilidad de Medicamentos , Femenino , Humanos , Ratones , Ratones Desnudos , Tamaño de la Partícula , Polietilenglicoles/química , Difracción de Rayos X , alfa-Tocoferol/química
8.
PLoS Biol ; 18(4): e3000491, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32282798

RESUMEN

Nervous systems exploit regularities in the sensory environment to predict sensory input, adjust behavior, and thereby maximize fitness. Entrainment of neural oscillations allows retaining temporal regularities of sensory information, a prerequisite for prediction. Entrainment has been extensively described at the frequencies of periodic inputs most commonly present in visual and auditory landscapes (e.g., >0.5 Hz). An open question is whether neural entrainment also occurs for regularities at much longer timescales. Here, we exploited the fact that the temporal dynamics of thermal stimuli in natural environment can unfold very slowly. We show that ultralow-frequency neural oscillations preserved a long-lasting trace of sensory information through neural entrainment to periodic thermo-nociceptive input as low as 0.1 Hz. Importantly, revealing the functional significance of this phenomenon, both power and phase of the entrainment predicted individual pain sensitivity. In contrast, periodic auditory input at the same ultralow frequency did not entrain ultralow-frequency oscillations. These results demonstrate that a functionally significant neural entrainment can occur at temporal scales far longer than those commonly explored. The non-supramodal nature of our results suggests that ultralow-frequency entrainment might be tuned to the temporal scale of the statistical regularities characteristic of different sensory modalities.


Asunto(s)
Encéfalo/fisiología , Percepción del Dolor/fisiología , Dolor/fisiopatología , Estimulación Acústica , Adulto , Electroencefalografía , Femenino , Humanos , Rayos Láser , Masculino , Dolor/psicología , Dimensión del Dolor , Procesamiento de Señales Asistido por Computador
9.
Colloids Surf B Biointerfaces ; 189: 110876, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32088559

RESUMEN

Poly(methacrylate oligoethylene glycol dendron-co-citric acid) (PGCA) that is based on citric acid and oligoethylene glycol (OEG) dendrons is utilized as a nanomaterial for the removal of heavy metal ions from aqueous solution. PGCA shows excellent solubility in aqueous solution and realizes satisfactory removal efficacy for Pb2+ ions; the removal rate exceeds 95 %. In addition, PGCA can be utilized in Chinese herbal decoctions; the removal rate of Pb2+ ions in the ligusticum wallichii decoction exceeds 90 %, meanwhile the concentration of the active ingredient, namely, ferulic acid, is maintained. In this nanoadsorbent, citric acid provides the active site for the chelation of heavy metal ions, and OEG dendron serves as a protective layer that reduces the opportunity for carboxyl groups to be occupied by other ingredients. In summary, nanomaterial PGCA is designed and synthesized successfully that can be applied as a nanoadsorbent for the removal of Pb2+ ions from aqueous solution, especially in Chinese herbal decoctions that have acidic compounds as active ingredients.


Asunto(s)
Antracenos/química , Ácido Cítrico/química , Glicoles de Etileno/química , Plomo/aislamiento & purificación , Ligusticum/química , Nanopartículas/química , Adsorción , Iones/química , Iones/aislamiento & purificación , Plomo/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
10.
J Nanobiotechnology ; 18(1): 4, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907045

RESUMEN

Disulfiram (DSF) has been considered as "Repurposing drug" in cancer therapy in recent years based on its good antitumor efficacy. DSF is traditionally used as an oral drug in the treatment of alcoholism. To overcome its rapid degradation and instability, DSF nanosuspensions (DSF/SPC-NSps) were prepared using soybean lecithin (SPC) as a stabilizer of high drug-loaded content (44.36 ± 1.09%). Comprehensive characterization of the nanosuspensions was performed, and cell cytotoxicity, in vivo antitumor efficacy and biodistribution were studied. DSF/SPC-NSps, having a spherical appearance with particle size of 155 nm, could remain very stable in different physiological media, and sustained release. The in vitro MTT assay indicated that the cytotoxicity of DSF/SPC-NSps was enhanced remarkably compared to free DSF against the 4T1 cell line. The IC50 value decreased by 11-fold (1.23 vs. 13.93 µg/mL, p < 0.01). DSF/SPC-NSps groups administered via intravenous injections exhibited better antitumor efficacy compared to the commercial paclitaxel injection (PTX injection) and had a dose-dependent effect in vivo. Notably, DSF/SPC-NSps exhibited similar antitumor activity following oral administration as PTX administration via injection into a vein. These results suggest that the prepared nanosuspensions can be used as a stable delivery vehicle for disulfiram, which has potential application in breast cancer chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Disulfiram/farmacología , Glycine max/química , Lecitinas/química , Nanopartículas/química , Animales , Rastreo Diferencial de Calorimetría , Línea Celular Tumoral , Disulfiram/química , Liberación de Fármacos , Estabilidad de Medicamentos , Femenino , Ratones Endogámicos BALB C , Nanopartículas/ultraestructura , Tamaño de la Partícula , Electricidad Estática , Suspensiones , Distribución Tisular/efectos de los fármacos , Resultado del Tratamiento , Difracción de Rayos X
11.
ACS Omega ; 4(10): 14162-14168, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31508537

RESUMEN

Heavy metal ions in aqueous solutions are harmful to human health, but exploring and exploiting nanoadsorbents with a high adsorption capacity and low cost should be an effective method for overcoming this problem. In this study, a novel nanoadsorbent termed poly(N-isopropylacrylamide-co-citric acid) (PNCA) was designed and synthesized via free-radical polymerization. PNCA exhibits good solubility in aqueous solutions and can self-assemble into spherical nanoaggregates with a mean hydrodynamic diameter of approximately 723.1 nm. After freeze-drying, the solid powder of PNCA exhibited a loose porous structure. When PNCA is dissolved in water, the resulting copolymer solution exhibits high removal rates for Cu2+ and Pb2+ of over 80%; meanwhile, over 97% of the PNCA is precipitated with metal ions. The adsorption process of PNCA chelated with Cu2+ ions fit the Freundlich model. The adsorption capacity is independent of the media pH, but could be affected by the temperature. Except for herbal medicines with alkaloids as active ingredients, PNCA also presents good adsorption capacity for Cu2+ in herbal medicine decoctions, with a removal rate of over 80%. The cell cytotoxicity in vitro and system toxicity in vivo demonstrate the desirable biosafety of PNCA. These results suggest that PNCA with good biosafety can be utilized as a nanoadsorbent to remove the metal ions, especially Cu2+, in different media.

12.
Neuroimage ; 198: 221-230, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31085301

RESUMEN

Survival in a suddenly-changing environment requires animals not only to detect salient stimuli, but also to promptly respond to them by initiating or revising ongoing motor processes. We recently discovered that the large vertex brain potentials elicited by sudden supramodal stimuli are strongly coupled with a multiphasic modulation of isometric force, a phenomenon that we named cortico-muscular resonance (CMR). Here, we extend our investigation of the CMR to the time-frequency domain. We show that (i) both somatosensory and auditory stimuli evoke a number of phase-locked and non-phase-locked modulations of EEG spectral power. Remarkably, (ii) some of these phase-locked and non-phase-locked modulations are also present in the Force spectral power. Finally, (iii) EEG and Force time-frequency responses are correlated in two distinct regions of the power spectrum. An early, low-frequency region (∼4 Hz) reflects the previously-described coupling between the phase-locked EEG vertex potential and force modulations. A late, higher-frequency region (beta-band, ∼20 Hz) reflects a second coupling between the non-phase-locked increase of power observed in both EEG and Force. In both time-frequency regions, coupling was maximal over the sensorimotor cortex contralateral to the hand exerting the force, suggesting an effect of the stimuli on the tonic corticospinal drive. Thus, stimulus-induced CMR occurs across at least two different types of cortical activities, whose functional significance in relation to the motor system should be investigated further. We propose that these different types of corticomuscular coupling are important to alter motor behaviour in response to salient environmental events.


Asunto(s)
Percepción Auditiva/fisiología , Ondas Encefálicas , Encéfalo/fisiología , Desempeño Psicomotor/fisiología , Percepción del Tacto/fisiología , Estimulación Acústica , Adulto , Fenómenos Biomecánicos , Femenino , Mano , Humanos , Contracción Isométrica , Masculino , Actividad Motora , Estimulación Física , Corteza Sensoriomotora/fisiología , Adulto Joven
13.
Phytomedicine ; 53: 286-293, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30668409

RESUMEN

BACKGROUND: Osteoporosis is a systemic skeletal disease of fragility fractures due to the loss of mass and deterioration of the microarchitecture of bone. PURPOSE: The aim of the study was to assess the osteogenic effects and the underlying mechanisms of the combined administration of You-Gui Yin (YGY) and Raloxifene hydrochloride (RLX) in ovariectomized (OVX) mice. METHODS: First, a classic animal model was used to mimic postmenopausal osteoporosis through the removal of the ovary of mice. Second, the OVX mice were administered YGY, RLX, and YGY + RLX for 12 weeks. Next, the bone microtomographic histomorphometry and bone mineral density (BMD) were assessed by micro-CT, and the biochemical markers of procollagen type I N-terminal propeptide (P1NP) and beta-isomerized C-telopeptide (ß-CTX) in serum were assessed. Finally, primary bone marrow stromal cells (BMSCs) were isolated from the tibia and cultured to evaluate cell proliferation and osteogenic differentiation. RESULTS: The results showed that BMD on the YGY + RLX group was higher than that on the RLX group (p < 0.05) and did not have a significant difference when compared with the sham group. Notably, the YGY + RLX group had a dramatically increased trabecular number (Tb.N) compared with that of the YGY group (p < 0.05). Moreover, the BV/TV (bone volume/total volume) and Tb.N in the YGY + RLX group were higher than that in the RLX group (p < 0.05), and the Tb.Sp (trabecular separation) was lower than that in the RLX group (p < 0.05). Moreover, the serum level of P1NP from the YGY + RLX group dramatically increased when compared with that from the YGY and RLX groups (YGY group: p < 0.05; RLX groups: p < 0.01). Notably, there was no significant difference between the YGY and YGY + RLX groups. In addition, cell proliferation from the co-administration of YGY and RLX was clearly higher than a single use of YGY and RLX (p < 0.01, respectively). The ALP/BCA (alkaline phosphatase/bicinchoninic acid) in the YGY + RLX group was higher than that in the RLX group (p < 0.01). CONCLUSION: Overall, co-administered YGY and RLX could partially attenuate bone loss and were more effective than individually using either one; this outcome might be associated with the proliferation and osteogenic differentiation of BMSCs.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Medicamentos Herbarios Chinos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Clorhidrato de Raloxifeno/farmacología , Animales , Densidad Ósea/efectos de los fármacos , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Medicamentos Herbarios Chinos/química , Femenino , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Osteoporosis/patología , Ovariectomía , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos
14.
Drug Deliv ; 25(1): 880-887, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29608108

RESUMEN

Annonaceous acetogenins (ACGs) are one of the most active constituents isolated from Annona species with potent antitumor activity. However, the poor solubility and severe side effect greatly limit their use in clinic. In this study, folic acid (FA) modified annonaceous acetogenins nanosuspensions (FA-PEG-ACGs-NSps) had been successfully prepared using DSPE-PEG-FA and soybean lecithin (SPC) as stabilizers. The resultant FA-PEG-ACGs-NSps had a mean particle size of 119.7 nm, a zeta potential of -23.0 mV and a high drug payload of 49.68%. The obtained ACGs-NSps had a good stability in various physiological media, and showed sustained drug release. Compared to common ACGs nanoparticles (PEG-ACGs-NSps), FA-PEG-ACGs-NSps showed significantly enhanced in vitro cytotoxicity against folate receptor-positive HeLa cell lines (IC50, 0.483 µg/mL vs. 0.915 µg/mL, p < .05), which could be effectively reversed simply by pretreatment of free FA. In vivo experiments demonstrated that FA-PEG-ACGs-NSps brought more drug molecules into tumors and greatly improved the antitumor efficacy (TIR, 76.45% vs. 25.29%, p < .001). Therefore, DSPE-PEG-FA is considered as a proper stabilizer with active targeting effect for ACGs-NSps to reduce toxicity, enlarge the safe dosage range and apply in clinic for the treatment of folate-positive tumors. Therefore, FA-PEG-ACGs-NSps may be a prospective drug delivery system for ACGs to improve their therapeutic window and find application in clinic to treat FR over-expressed tumors.


Asunto(s)
Acetogeninas/farmacología , Antineoplásicos Fitogénicos/farmacología , Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Nanopartículas , Neoplasias del Cuello Uterino/tratamiento farmacológico , Acetogeninas/química , Acetogeninas/metabolismo , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Liberación de Fármacos , Excipientes/química , Femenino , Ácido Fólico/química , Células HeLa , Humanos , Lecitinas/química , Ratones Endogámicos BALB C , Ratones Desnudos , Nanomedicina , Tamaño de la Partícula , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Solubilidad , Tecnología Farmacéutica/métodos , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Int J Nanomedicine ; 12: 5053-5067, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28765708

RESUMEN

Annonaceous acetogenins (ACGs) are a large family of fatty acid derived natural products that are exclusively isolated from the Annonaceae species. Many members of this diverse family have a broad spectrum of biological activities, the most impressive of which is anticancer activity. However, their poor solubility and severe toxicity restrict their clinical application, and their complicated composition hinders their formulation and drug delivery. In this study, ß-cyclodextrin was modified with folic acid (FA) and then combined with soybean lecithin to prepare FA-modified ACGs nanosuspensions (FA-ACGs-NSps). The obtained FA-ACGs-NSps had a high drug payload of 57.59% and average particle size of 199.5 nm, and they exhibited sustained drug release within 142 hours. In comparison with ACGs-NSps, FA-ACGs-NSps showed significantly enhanced cytotoxicity and higher cell uptake toward folate receptor-positive 4T1 cell lines. An in vivo study demonstrated that FA-ACGs-NSps more effectively accumulated in tumors and enhanced the antitumor therapeutic efficacy with less toxicity in 4T1 tumor bearing mice. Therefore, FA-ACGs-NSps may be a promising drug delivery system for ACGs to improve their therapeutic window and may be suitable for clinical application to treat folate-positive tumors.


Asunto(s)
Acetogeninas/química , Acetogeninas/farmacología , Antineoplásicos Fitogénicos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico/química , Acetogeninas/farmacocinética , Animales , Annonaceae/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Femenino , Ácido Fólico/farmacología , Humanos , Lecitinas/química , Ratones Endogámicos BALB C , Nanoestructuras/química , Tamaño de la Partícula , Solubilidad , Suspensiones/química , Suspensiones/farmacología , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Ciclodextrinas/química
16.
Zhongguo Zhong Yao Za Zhi ; 38(7): 979-84, 2013 Apr.
Artículo en Chino | MEDLINE | ID: mdl-23847941

RESUMEN

OBJECTIVE: To synthesize three amphiphilic molecules (TEG-R1, TEG-R2, TEG-R3), with branched oligo polyethylene glycol as hydrophilic fractions and aliphatic chains (containing six, eight and twelve carbon atoms respectively) as hydrophobic fractions, and study them as insoluble drug vectors. METHOD: Three compounds were successfully through acylation, substitution reaction, reduction reaction and esterification. Their structures were verified by NMR analysis; and the critical micelle concentrations (CMC) of TEG-R1, TEG-R2, TEG-R3 were determined by pyrene fluorescence probe spectrometry. Transmission electronic microscopy (TEM) photos displayed the state of the aqueous solution. The self-assembly solution evaporation method was adopted to prepare drug loading podophyllotoxin micelles, and characterize their grain size, in order to detect the hemolysis of the three amphiphilic molecules. RESULT: Nuclear magnetism showed the successful synthesis of three amphiphilic molecules, with critical micelle concentrations of TEG-R1, TEG-R2, TEG-R3 of 50, 50, 10 mg x L(1), respectively. Transmission electronic microscopy (TEM) photos displayed a spherical-like state, with diameter of 20-50 nm. All of the three amphiphilic molecules could be prepared into drug-loading micelles, with the range of grain sizes between 100-200 nm. Hemdytic experiment showed that, among the amphiphilic molecules of the graft six-carbon aliphatic chain, TEG-R1 could not cause hemolysis. CONCLUSION: All of the three amphiphilic molecules are micellized in water solution, and can be used as insoluble drug vectors. Among them, TEG-R1 could not cause hemolysis, and is expected to become a new-type drug vector.


Asunto(s)
Portadores de Fármacos/síntesis química , Polímeros/síntesis química , Portadores de Fármacos/química , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Microscopía Electrónica de Transmisión , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA