Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 345: 118575, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451029

RESUMEN

Aluminum is an important lightweight and high-value metal that is widely used in the transportation, construction, and military industries. China is the largest producer of Al in the world, and vast quantities of Al dross (ash) are generated and stored every year. Aluminum dross contains fluoride and heavy metals, and easily reacts with water and acid to produce stimulating, toxic, and explosive gases. Owing to a lack of developed technologies, most of this dross cannot be safely treated, resulting in a waste of resources and serious environmental and ecological risks. This review briefly describes the distribution and proportions of bauxite deposits in China, the Al extraction process, and the hazardous solid waste that is generated. It also discusses the comprehensive treatments for Al dross, including the hydrometallurgy and pyrometallurgy recovery processes, and reuse of Al, Al2O3, SiO2, and chloride salts as a summarized comparison of their advantages and disadvantages. In particular, this review focuses on the efforts to analyze the relationship between existing processes and the attempts to establish a comprehensive technology to treat Al dross. Additionally, areas for future research are suggested, which may provide new ideas for the closed-loop treatment of Al dross.


Asunto(s)
Aluminio , Dióxido de Silicio , Metales , Óxido de Aluminio , China
2.
Plant Physiol Biochem ; 160: 27-36, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33454634

RESUMEN

Tea varieties with specific colours have often been studied by researchers. However, previous studies on the albinism of tea plants have mostly been based on plants with different genetic backgrounds or focused on common components in albino tea leaves, such as amino acids, flavones, and carotenoids. In this study, we conducted widely targeted metabolic and transcriptomic analyses between a wildtype tea genotype (Shuixian, LS) and its albino mutant (Huangjinshuixian, HS). At the molecular level, alteration of gene expression levels in the MEP pathway may have reduced the production of chlorophyll and carotenoids in HS, which could be the main cause of the phenotypic changes in HS. At the metabolite level, a large number of metabolites related to light protection that significantly accumulated in HS, including flavones, anthocyanins, flavonols, flavanones, vitamins and their derivatives, polyphenols, phenolamides. This result, combined with an enzyme activity experiment, suggested that the absence of photosynthetic pigments made the albino tea leaves of HS more vulnerable to UV stress, even under normal light conditions. In addition, except for the common amino acids, we also identified numerous nitrogen-containing compounds, including nucleotides and their derivates, amino acid derivatives, glycerophospholipids, and phenolamides, which implied that significant accumulation of NH4+ in albino tea leaves could not only promote amino acid synthesis but could also activate other specialized metabolic pathways related to nitrogen metabolism. In conclusion, our results provide new information to guide further studies of the extensive metabolic reprogramming events caused by albinism in tea plants.


Asunto(s)
Camellia sinensis , Metaboloma , Pigmentación/genética , Transcriptoma , Camellia sinensis/genética , Carotenoides , Clorofila , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética
3.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627263

RESUMEN

C-repeat binding factors (CBFs) are key signaling genes that can be rapidly induced by cold and bind to the C-repeat/dehydration-responsive motif (CRT/DRE) in the promoter region of the downstream cold-responsive (COR) genes, which play a vital role in the plant response to low temperature. However, the CBF family in tea plants has not yet been elucidated, and the possible target genes regulated by this family under low temperature are still unclear. In this study, we identified five CsCBF family genes in the tea plant genome and analyzed their phylogenetic tree, conserved domains and motifs, and cis-elements. These results indicate that CsCBF3 may be unique in the CsCBF family. This is further supported by our findings from the low-temperature treatment: all the CsCBF genes except CsCBF3 were significantly induced after treatment at 4 °C. The expression profiles of eight tea plant tissues showed that CsCBFs were mainly expressed in winter mature leaves, roots and fruits. Furthermore, 685 potential target genes were identified by transcriptome data and CRT/DRE element information. These target genes play a functional role under the low temperatures of winter through multiple pathways, including carbohydrate metabolism, lipid metabolism, cell wall modification, circadian rhythm, calcium signaling, transcriptional cascade, and hormone signaling pathways. Our findings will further the understanding of the stress regulatory network of CsCBFs in tea plants.


Asunto(s)
Camellia sinensis/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencias de Aminoácidos , Sitios de Unión , Frío , Secuencia Conservada , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/fisiología
4.
Planta ; 250(5): 1671-1686, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31410553

RESUMEN

MAIN CONCLUSION: Genome-wide identification and characterization of nuclear factor-Y family in tea plants, and their expression profiles and putative targets provide the basis for further elucidation of their biological functions. The nuclear factor-Y (NF-Y) transcription factors (TFs) are crucial regulators of plant growth and physiology. However, the NF-Y TFs in tea plant (Camellia sinensis) have not yet been elucidated, and its biological functions, especially the putative target genes within the genome range, are still unclear. In this study, we identified 35 CsNF-Y encoding genes in the tea plant genome, including 10 CsNF-YAs, 15 CsNF-YBs and 10 CsNF-YCs. Their conserved domains and motifs, phylogeny, duplication event, gene structure, and promoter were subsequently analyzed. Tissue expression analysis revealed that CsNF-Ys exhibited three distinct expression patterns in eight tea tree tissues, among which CsNF-YAs were moderately expressed. Drought and abscisic acid (ABA) treatment indicated that CsNF-YAs may have a greater impact than other subunit members. Furthermore, through the genome-wide investigation of the presence of the CCAAT box, we found that CsNF-Ys may participate in the development of tea plants by regulating target genes of multiple physiological pathways, including photosynthesis, chlorophyll metabolism, fatty acid biosynthesis, and amino acid metabolism pathways. Our findings will contribute to the functional analysis of NF-Y genes in woody plants and the cultivation of high-quality tea plant cultivars.


Asunto(s)
Ácido Abscísico/metabolismo , Factor de Unión a CCAAT/metabolismo , Camellia sinensis/genética , Genoma de Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Factor de Unión a CCAAT/genética , Sequías , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA