Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Food ; 24(5): 505-516, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34009025

RESUMEN

We previously reported that mature Bombyx mori silkworm (SW) ameliorated scopolamine (Sco)-induced amnesia, and Angelica gigas (AG) prevented cognitive impairment. SW is known for its gastroprotective effects such as improving liver function and alleviating the effects of Parkinson's disease. AG is known for its neuroprotective effects and for lowering the effects of low-density lipoprotein cholesterol. However, the neuroprotective effect of combined SW and AG (SWA-1) treatment and the underlying molecular mechanism by which SWA-1 regulates neurodegenerative diseases remains unclear. We evaluated the neuroprotective effect of SWA-1 against Sco-induced mild cognitive impairment in mice and H2O2-induced cell death in HT22 mouse hippocampal neuronal cells and elucidated the underlying molecular mechanism. Morris water maze and Y-maze tests were performed to examine the learning and memory abilities of mice. The underlying molecular mechanism was investigated by using western blotting. We demonstrated that SWA-1 significantly protects against H2O2-induced cell death in HT22 mouse hippocampal neuronal cells. SWA-1 also significantly reversed Sco-induced spatial learning and memory impairment. Specifically, SWA-1 upregulates the protein levels of phosphorylated extracellular signal-related kinase (Erk1/2) and phosphorylated p38 MAP kinase (p38). SWA-1 remarkably decreased the apoptotic index Bax/Bcl2 expression in the hippocampus of Sco-treated mice. Our results suggest that SWA-1 may be administered as alternative therapy for cognitive impairment and neurodegenerative diseases and should be studied further in human trials.


Asunto(s)
Angelica , Bombyx , Disfunción Cognitiva , Fármacos Neuroprotectores , Animales , Muerte Celular , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Hipocampo , Peróxido de Hidrógeno/toxicidad , Aprendizaje por Laberinto , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Escopolamina/toxicidad
2.
J Med Food ; 24(2): 135-144, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33617365

RESUMEN

Thrombosis causes poor blood circulation, which may lead to several cardiovascular disorders. Antiplatelet aggregation and antihyperlipidemia are the key processes that improve blood circulation. The antiplatelet aggregation and antihyperlipidemic effects of ACG-1, a mixture of Angelica gigas, Cynanchum wilfordii, and Ginkgo biloba extracts, were investigated in this study. The antiplatelet aggregation activity of ACG-1 was determined by studying its effects on collagen-induced platelet aggregation in human platelet-rich plasma (PRP). In addition, the effects of ACG-1 were investigated in a thromboembolism mouse model. The high-fat diet (HFD)-fed mouse model was used to investigate the antihyperlipidemic effects of ACG-1 and western blotting assay was performed to elucidate its mechanism of action. It was observed that ACG-1 significantly inhibited platelet aggregation in human PRP. Furthermore, ACG-1 showed protective effects in a thromboembolism mouse model induced by administering a mixed collagen and epinephrine intravenous injection. Oral administration of ACG-1 also significantly ameliorated blood lipid profiles in the HFD-fed mouse model. In conclusion, ACG-1 should be considered a powerful functional food to improve blood circulation.


Asunto(s)
Angelica , Circulación Sanguínea , Cynanchum , Ginkgo biloba , Extractos Vegetales , Agregación Plaquetaria , Angelica/química , Animales , Circulación Sanguínea/efectos de los fármacos , Cynanchum/química , Modelos Animales de Enfermedad , Ginkgo biloba/química , Humanos , Ratones , Extractos Vegetales/farmacología , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Tromboembolia/tratamiento farmacológico
3.
J Med Food ; 20(1): 46-55, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28098516

RESUMEN

We previously showed that Aster spathulifolius Maxim extract (ASE) reduced body weight gain and serum and liver lipid levels and significantly suppressed serum insulin and leptin concentrations in high-fat diet (HFD)-induced obese rats. Germacrone (GM) was identified as a potent bioactive constituent of ASE. In this study, we hypothesized that GM can attenuate hyperlipidemia by alleviating fatty acid (FA) synthesis/uptake and improve lipid metabolism by stimulating FA ß-oxidation in HFD-induced obese C57BL/6J mice. To induce obesity, mice were fed an HFD for 6 weeks, while control mice were fed a commercial standard diet. The mice were allocated to six groups and fed either a normal diet, HFD, HFD with GM (5, 10, and 20 mg/kg), or HFD with 200 mg/kg Garcinia cambogia extract for 30 days. In the GM groups, body weight gain, visceral fat pad weight, fasting plasma glucose, serum insulin and leptin, and serum, as well as hepatic lipid, levels were attenuated. Transcriptional factors related to lipid metabolism, such as AMP-activated protein kinase α, sterol regulatory element-binding protein (SREBP) 1, SREBP 2, acetyl-CoA carboxylase, peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, FA synthase, and carnitine palmitoyltransferase 1, showed higher expression in the GM groups. In summary, GM may help attenuate hyperlipidemia by suppressing FA synthesis and uptake by inhibiting SREBP signaling pathway activation and improve lipid metabolism by stimulating FA ß-oxidation by activating the AMPKα signaling pathway in HFD-induced obesity.


Asunto(s)
Aster/química , Hiperlipidemias/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Sesquiterpenos de Germacrano/administración & dosificación , Acetil-CoA Carboxilasa/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Hiperlipidemias/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , PPAR alfa/metabolismo , Extractos Vegetales/química , Ratas , Sesquiterpenos de Germacrano/química , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
4.
J Med Food ; 19(4): 353-64, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26908215

RESUMEN

The aim of this study was to investigate the anti-obesity and antihyperlipidemic efficacy and molecular mechanisms of Aster spathulifolius Maxim extract (ASE) in rats with high-fat diet (HFD)-induced obesity. Rats were separately fed a normal diet or a HFD for 8 weeks, then they were treated with ASE (62.5, 125, or 250 mg/kg) for another 4.5 weeks. The ASE supplementation significantly lowered body weight gain, visceral fat pad weights, serum lipid levels, as well as hepatic lipid levels in HFD-induced obese rats. Histological analysis showed that the ASE-treated group showed lowered numbers of lipid droplets and smaller size of adipocytes compared to the HFD group. To understand the mechanism of action of ASE, the expression of genes and proteins involved in obesity were measured in liver and skeletal muscle. The expression of fatty acid oxidation and thermogenesis-related genes (e.g., PPAR-α, ACO, CPT1, UCP2, and UCP3) of HFD-induced obese rats were increased by ASE treatment. On the other hand, ASE treatment resulted in decreased expression of fat intake-related gene ACC2 and lipogenesis-related genes (e.g., SREBP-1c, ACC1, FAS, SCD1, GPATR, AGPAT, and DGAT). Furthermore, ASE treatment increased the level of phosphorylated AMPKα in obese rats. Similarly, the level of phosphorylated ACC, a target protein of AMPKα in ASE groups, was increased by ASE treatment compared with the HFD group. These results suggest that ASE attenuated visceral fat accumulation and improved hyperlipidemia in HFD-induced obese rats by increasing lipid metabolism through the regulation of AMPK activity and the expression of genes and proteins involved in lipolysis and lipogenesis.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Aster/química , Obesidad/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Masculino , Obesidad/genética , Obesidad/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
5.
Arch Pharm Res ; 39(1): 21-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26589689

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness among the elderly. Although the pathogenesis of this disease remains still obscure, several researchers have report that death of retinal pigmented epithelium (RPE) caused by excessive accumulation of A2E is crucial determinants of AMD. In this study, the preventive effect of Vaccinium uliginosum L. (V.U) extract and its fractions on AMD was investigated in blue light-irradiated human RPE cell (ARPE-19 cells). Blue light-induced RPE cell death was significantly inhibited by the treatment of V.U extract or its fraction. To identify the mechanism, FAB-MS analysis revealed that V.U inhibits the photooxidation of N-retinyl-N-retinylidene ethanolamine (A2E) induced by blue light in cell free system. Moreover, monitoring by quantitative HPLC also revealed that V.U extract and its fractions reduced intracellular accumulation of A2E, suggesting that V.U extract and its fractions inhibit not only blue light-induced photooxidation, but also intracellular accumulation of A2E, resulting in RPE cell survival after blue light exposure. A2E-laden cell exposed to blue light induced apoptosis by increasing the cleaved form of caspase-3, Bax/Bcl-2. Additionally, V.U inhibited by the treatment of V.U extract or quercetin-3-O-arabinofuranoside. These results suggest that V.U extract and its fractions have preventive effect on blue light-induced damage in RPE cells and AMD.


Asunto(s)
Degeneración Macular/metabolismo , Extractos Vegetales/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Vaccinium , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Epitelio Pigmentado de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA