RESUMEN
Coronary artery disease has one of the highest mortality rates in the country, and methods such as thrombolysis and percutaneous coronary intervention (PCI) can effectively improve symptoms and reduce mortality, but most patients still experience symptoms such as chest pain after PCI, which seriously affects their quality of life and increases the incidence of adverse cardiovascular events (myocardial ischaemiareperfusion injury, MIRI). MIRI has been shown to be closely associated with circadian rhythm disorders and mitochondrial dysfunction. Mitochondria are a key component in the maintenance of normal cardiac function, and new research shows that mitochondria have circadian properties. Traditional Chinese medicine (TCM), as a traditional therapeutic approach characterised by a holistic concept and evidence-based treatment, has significant advantages in the treatment of MIRI, and there is an interaction between the yin-yang theory of TCM and the circadian rhythm of Western medicine at various levels. This paper reviews the clinical evidence for the treatment of MIRI in TCM, basic experimental studies on the alleviation of MIRI by TCM through the regulation of mitochondria, the important role of circadian rhythms in the pathophysiology of MIRI, and the potential mechanisms by which TCM regulates mitochondrial circadian rhythms to alleviate MIRI through the regulation of the biological clock transcription factor. It is hoped that this review will provide new insights into the clinical management, basic research and development of drugs to treat MIRI.
Asunto(s)
Lesiones Cardíacas , Daño por Reperfusión Miocárdica , Intervención Coronaria Percutánea , Humanos , Medicina Tradicional China , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Calidad de Vida , Ritmo Circadiano , MitocondriasRESUMEN
All species have a physiological need for sleep, and sleep is crucial for the preservation and restoration of many physiological processes in the body. Recent research on the effects of gut microbiota on brain function has produced essential data on the relationship between them. It has been discovered that dysregulation of the gut-brain axis is related to insomnia. Certain metabolites of gut microbiota have been linked to insomnia, and disturbances in gut microbiota can worsen insomnia. Traditional Chinese medicine (TCM) has unique advantages for the treatment of insomnia. Taking the gut microbiota as the target and determining the scientific relevance of TCM to the prevention and treatment of insomnia may lead to new concepts for the treatment of sleep disorders and improve the therapeutic effect of sleep. Taking the gut microbiota as an entry point, this paper reviews the relationship between gut microbiota and TCM, the relationship between gut microbiota and insomnia, the mechanism by which gut microbiota regulate sleep, and the mechanism by which TCM regulates gut microbiota for insomnia prevention and treatment. This review provides new ideas for the prevention and treatment of insomnia through TCM and new ideas for drug development.
Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Eje Cerebro-IntestinoRESUMEN
Introduction: Shufeng Jiedu capsule (SFJD) is a commonly used Chinese patent medicine in China. Some studies have reported that SFJD has therapeutic effects in patients diagnosed with COVID-19. This systematic review aimed to critically evaluate the efficacy and safety of SFJD combined with western medicine (WM) for treating COVID-19. Methods: A literature search by using WHO COVID-19 database, PubMed, Embase, Cochrane Library, the Web of Science, CKNI, Wanfang, VIP, SinoMed, and clinical trial registries was conducted, up to 1 August 2022. Randomized controlled trials (RCTs), non-RCTs, cohort studies and case series of SFJD combined with WM for COVID-19 were included. Literature screening, data extraction, and quality assessment were performed independently by two reviewers in line with the same criteria. We used the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) to assess the certainty of evidence. Meta-analyses were performed with Revman 5.3 if possible. The descriptive analysis was conducted when the studies could not be meta-analyzed. Results: Totally 10 studies with 1,083 patients were included. Their methodological quality were moderate. The results demonstrated that compared to WM group, SFJD + WM group remarkably increased the nucleic acid negative conversion rate (RR = 1.40, 95%CI: 1.07-1.84), total effective rate (RR = 1.18, 95%CI: 1.07-1.31), cure rate (RR = 4.06, 95%CI: 2.19-7.53), and the chest CT improvement rate (RR = 1.19, 95%CI: 1.08-1.31), shorten nucleic acid negative conversion time (MD = -0.70, 95%CI: -1.14 to -0.26), reduced the clinical symptom disappearance time (fever, diarrhea, cough, fatigue, pharyngalgia, nasal congestion, and rhinorrhea), as well as improved the levels of laboratory outcomes (CRP, IL-6, Lym, and Neu). Additionally, the incidence of adverse reactions did not exhibit any statistically significant difference between SFJD + WM group and WM group. Conclusion: SFJD combined with WM seems more effective than WM alone for the treatment of COVID-19. However, more well-designed RCTs still are warranted. Systematic review registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42022306307].
RESUMEN
Ceramide is a natural functional ingredient as food additive and medicine that has attracted extensive attention in the food, medical, and cosmetic industries. Here, we developed a biotechnological strategy based on a recombinant whole-cell biocatalyst for efficiently producing ceramide from crude soybean oil sediment (CSOS) waste. A novel phospholipase C (PLCac) from Acinetobacter calcoaceticus isolated from soil samples was identified and characterized. Furthermore, recombinant Komagataella phaffii displaying PLCac (dPLCac) on the cell surface was constructed as a whole-cell biocatalyst with better thermostability (30-60 °C) and pH stability (8.0-10.0) to successfully produce ceramide. After synergistical optimization of reaction time and dPLCac dose, the ceramide yield of hydrolyzing from CSOS using dPLCac was 51% (the theoretical maximum yield of converting sphingomyelin, â¼70%) and the relative yield was over 50% after seven consecutive 4 h batches under the optimized conditions. Our study provides a potentially promising strategy for the commercial production of ceramide.