Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768420

RESUMEN

Moringa oleifera, also known as the "tree of life" or "miracle tree," is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.


Asunto(s)
Moringa oleifera , Moringa oleifera/química , Medicina Tradicional , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/análisis
2.
Chem Biol Interact ; 351: 109745, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34774839

RESUMEN

Cancer is the leading cause of human disease and death worldwide, accounting for 7.6 million deaths per year and projected to reach 13.1 million by 2030. Many phytochemicals included in traditional medicine have been utilized in the management of cancer. Conventional chemotherapy is generally known to be the most effective treatment of metastatic cancer but these cancerous cells might grow resistant to numerous anticancer drugs over time that resulting in treatment failure. This review tried to portray the advancement in the anticancer and chemopreventive effects of several phytochemicals and some of its members encapsulated in the nano-based delivery system of the drug. It comprises the issue associated with limited use of each phytoconstituents in human cancer treatment are discussed, and the benefits of entrapment into nanocarriers are evaluated in terms of drug loading efficiency, nanocarrier size, release profile of the drug, and in vitro and/or in vivo research and treatment testing, such as cytotoxicity assays and cell inhibition/viability.


Asunto(s)
Antineoplásicos/uso terapéutico , Sistema de Administración de Fármacos con Nanopartículas/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fitoquímicos/química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Liposomas/química , Nanocápsulas/química , Nanosferas/química
3.
Nutr Neurosci ; 25(10): 2149-2166, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34369317

RESUMEN

Objectives: We aimed to investigate the protective potential of Punica granatum L. fruit rind extract (PFE) containing punicalagin (10.3% W/W), ellagic acid (EA) (2.7%W/W) in vincristine (75 µg/kg i.p.)- induced neuropathic pain in Wistar rats.Methods: Docking simulation studies were done on the three-dimensional (3D) structure of the GABAA and PPAR γ receptor for the binding of EA as well as punicalagin docking studies on TNF-α, and IL-6. The Present Study conceptualized a test battery to evaluate the behavioral, biochemical and histological changes.Results: Vincristine -induced significant cold allodynia, mechanical hyperalgesia, and functional deficit on 12th and 21st days. It also increased in the levels of TNF-α (Tumor necrosis factor-α), IL-6 (Interleukin-6), and MPO (Myeloperoxidase). Administration of PFE (100 and 300 mg/kg, p.o.), EA (50 mg/kg), and gabapentin (100 mg/kg) attenuated Vincristine-induced behavioral and biochemical changes significantly (P < .05). PFE showed better antinociceptive activity to EA. The histopathological evaluation also revealed the protective effects of PFE. Pretreatment of bicuculline (selective antagonist of GABAA receptors) reversed antinociceptive action of PFE, but administration of γ aminobutyric acid potentiated the action of PFE. PPAR-γ antagonist BADGE did not modify the effect of PFE. Docking results revealed that EA properly positioned into GABA and PPARγ binding site and acts as a partial agonist. Docking score of Punicalagin found to be - 9.02 kcal/mol and - 8.32 kcal/mol on IL-6 and TNFα respectively.Discussion: Conclusively, the attenuating effect of PFE may be attributed to the GABAergic system, cytokine inhibition, and anti-inflammatory activities.


Asunto(s)
Lythraceae , Neuralgia , Granada (Fruta) , Analgésicos , Animales , Antiinflamatorios/farmacología , Bicuculina/análisis , Bicuculina/uso terapéutico , Citocinas , Ácido Elágico/análisis , Ácido Elágico/farmacología , Ácido Elágico/uso terapéutico , Frutas/química , Gabapentina/análisis , Gabapentina/uso terapéutico , Taninos Hidrolizables , Interleucina-6/análisis , Lythraceae/química , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , PPAR gamma , Peroxidasa/análisis , Peroxidasa/uso terapéutico , Extractos Vegetales , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/análisis , Vincristina/toxicidad
4.
Curr Med Chem ; 28(39): 8003-8035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33148148

RESUMEN

At present, skin cancer is considered a widespread malignancy in human beings. Among diverse population types, Caucasian populations are much more prone to this malignancy in comparison to darker skin populations due to the lack of skin pigmentation. Skin cancer is divided into malignant and non-melanoma skin cancer, which is further categorized as basal and squamous cell carcinoma. Exposure to ultraviolet radiation, chemical carcinogen (polycyclic aromatic hydrocarbons, arsenic, tar, etc.), and viruses (herpes virus, human papillomavirus, and human T-cell leukemia virus type-1) are major contributing factors to skin cancer. There are distinct pathways available through which skin cancer develops, such as the JAK-STAT pathway, Akt pathway, MAPKs signaling pathway, Wnt signaling pathway, to name a few. Currently, several targeted treatments are available, such as monoclonal antibodies, which have dramatically changed the line of treatment of this disease but possess major therapeutic limitations. Thus, many phytochemicals have been evaluated either alone or in combination with the existing synthetic drugs to overcome their limitations and have been found to play a promising role in the prevention and treatment. In this review, a complete overview of skin cancer, starting from the signaling pathways involved, newer developed drugs with their targets and limitations, along with the emerging role of natural products alone or in combination as potent anticancer agents and their molecular mechanism involved has been discussed. Apart from this, various nano-cargos have also been mentioned here, which can play a significant role in the management and treatment of different types of skin cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Lípidos , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Rayos Ultravioleta
5.
J Complement Integr Med ; 18(1): 9-21, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427121

RESUMEN

Natural products are increasing used in preventing and treating various diseases. Mangiferin belongs to the xanthone family, and has potential antiangiogenic, anticancer, immunomodulatory and anti-inflammatory activity along with the antioxidant activity. It is also used in the treatment of cardiac problem, diabetes and neurodegenerative disease. Finding of various researchers proves that mangiferin has a broad spectrum therapeutic application. Motive of this review is to describe the various studies performed on mangiferin for its different pharmacological activities. It also discusses various challenges associated with mangiferin such as stability and bioavailability. Strategies and approaches to improve bioavailability of mangiferin have also been discussed. Both research and review articles were used to write the manuscript. They were collected from various search engines like Pub Med, Science Direct and Google Scholar, using keywords like mangiferin, polyphenol, bioavailability enhancement, solubility enhancement, and antioxidant. Mangiferin being a potent antioxidant is effective in the treatment of various diseases. With novel drug delivery approaches we can overcome poor solubility and bioavailability problem which eventually can result to better utilisation of mangiferin in treating a variety of diseases and make mangiferin a revolutionary drug.


Asunto(s)
Antioxidantes/farmacocinética , Xantonas/farmacocinética , Animales , Disponibilidad Biológica , Diabetes Mellitus/tratamiento farmacológico , Cardiopatías/tratamiento farmacológico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico
6.
Plant Cell Physiol ; 60(3): 672-686, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541044

RESUMEN

The medicinal properties of Ashwagandha (Withania somnifera) are accredited to a group of compounds called withanolides. 24-Methylene cholesterol is the intermediate for sterol biosynthesis and a proposed precursor of withanolide biogenesis. However, conversion of 24-methylene cholesterol to withaferin A and other withanolides has not yet been biochemically dissected. Hence, in an effort to fill this gap, an important gene, encoding S-adenosyl l-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1), involved in the first committed step of sterol biosynthesis, from W. somnifera was targeted in the present study. Though SMT1 has been characterized in model plants such as Nicotiana tabacum and Arabidopsis thaliana, its functional role in phytosterol and withanolide biosynthesis was demonstrated for the first time in W. somnifera. Since SMT1 acts at many steps preceding the withanolide precursor, the impact of this gene in channeling of metabolites for withanolide biosynthesis and its regulatory nature was illustrated by suppressing the gene in W. somnifera via the RNA interference (RNAi) approach. Interestingly, down-regulation of SMT1 in W. somnifera led to reduced levels of campesterol, sitosterol and stigmasterol, with an increase of cholesterol content in the transgenic RNAi lines. In contrast, SMT1 overexpression in transgenic N. tabacum enhanced the level of all phytosterols except cholesterol, which was not affected. The results established that SMT1 plays a crucial role in W. somnifera withanolide biosynthesis predominantly through the campesterol and stigmasterol routes.


Asunto(s)
Fitosteroles/metabolismo , Extractos Vegetales/metabolismo , Withania/metabolismo , Witanólidos/metabolismo , Interferencia de ARN
7.
Neurosci Lett ; 657: 84-90, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28780166

RESUMEN

Cholinergic function is compromised in plethora of neurodegenerative disorders especially Alzheimer's disease. Increasing acetylcholine (ACh) levels has been the mainstay in majority of the therapeutic regimens, accepted for management of disease. The present study investigates the efficacy of 5-Desmethylnobiletin (DN), a polymethoxyflavone in augmenting cholinergic function using Caenorhabditis elegans as a model organism. The studies revealed significant elevation in cholinergic transmission mediated through increased levels of ACh and activity of nicotinic acetylcholine receptors (nAChR). Further investigation into the mechanistic aspects indicated that DN enhanced cholinergic function through down modulation of acetylcholinesterase activity at enzyme and transcript level along with upregulation of non alpha subunit, unc-29 which could be linked with enhanced nAChR activity as evident from levamisole assay. Additionally, studies on antioxidant properties, implicated significant potential of DN in curtailing ROS, both in vivo and in vitro. Our studies present DN as a phytomolecule with novel biological activities which could be exploited and researched upon for therapeutic avenues in terms of cholinergic function and antioxidant potential.


Asunto(s)
Acetilcolina/metabolismo , Acetilcolinesterasa/efectos de los fármacos , Colinérgicos/farmacología , Flavonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Caenorhabditis elegans , Gardenia , Extractos Vegetales
8.
Protoplasma ; 254(1): 389-399, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26971099

RESUMEN

The medicinal plant Withania somnifera is researched extensively to increase the quantity of withanolides and specifically withaferin A, which finds implications in many pharmacological activities. Due to insufficient knowledge on biosynthesis and unacceptability of transgenic approach, it is preferred to follow alternative physiological methods to increase the yield of withanolides. Prior use of elicitors like salicylic acid, methyl jasmonate, fungal extracts, and even mechanical wounding have shown to increase the withanolide biosynthesis with limited success; however, the commercial viability and logistics of application are debatable. In this investigation, we tested the simple nitrogeneous fertilizers pertaining to the enhancement of withaferin A biosynthesis. Application of ammonium sulfate improved the sterol contents required for the withanolide biosynthesis and correlated to higher expression of pathway genes like FPPS, SMT1, SMT2, SMO1, SMO2, and ODM. Increased expression of a gene homologous to allene oxide cyclase, crucial in jasmonic acid biosynthetic pathway, suggested the involvement of jasmonate signaling. High levels of WRKY gene transcripts indicated transcriptional regulation of the pathway genes. Increase in transcript level could be correlated with a corresponding increase in the protein levels for WsSMT1 and WsWRKY1. The withaferin A increase was also demonstrated in the potted plants growing in the glasshouse and in the open field. These results implicated simple physiological management of nitrogen fertilizer signal to improve the yield of secondary metabolite through probable involvement of jasmonate signal and WRKY transcription factor for the first time, in W. somnifera besides improving the foliage.


Asunto(s)
Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Nitrógeno/farmacología , Oxilipinas/metabolismo , Esteroles/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Withania/genética , Witanólidos/metabolismo , Sulfato de Amonio/farmacología , Vías Biosintéticas/efectos de los fármacos , Dimetilsulfóxido/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Fósforo/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potasio/farmacología , Especies Reactivas de Oxígeno/metabolismo , Urea/farmacología , Withania/efectos de los fármacos
9.
Biomed Pharmacother ; 85: 444-456, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27899258

RESUMEN

In the present study we mined the information on Gardenia lucida (Dikamali) and identified seven polymethoxyflavones from its gum resin. We also investigated its antiproliferative and antioxidant potential. Xanthomicrol (8) found as potent DPPH scavenger (85.86±1.3%) along with strong ferric plummeting ability (53.60±2.0 FSE) and reducing potential (1.07±0.01) as compared to ascorbic acid. Gardenin B (5) strongly inhibit biochemical production of nitric oxide (IC50 10.59±0.4µg/mL) followed by 5-Desmethylnobiletin (7) and Gardenin E (10, IC5011.01±0.7-34.53±2.7µg/mL). Methanol extract, chloroform fraction and Acerosin (11), Gardenin D (9) and Gardenin B (5) exhibited superior antiproliferative activity against lung, breast, colon, hepatic and leukaemia cell lines as well as in keratinocytes (IC50 12.82±0.67-94.63±1.27µg/mL) whereas other fractions and isolated compounds moderately affect the cell proliferation (21.40±0.12-48.12±0.47%) with least and non-specific interaction against succinate dehydrogenase. Except compound 2, 3, 6, 8 and 11, others were found as a significant inhibitor of ODC (IC50 2.36±0.7-8.53±0.32µg/mL) with respect to DFMO (IC50 10.85±0.28µg/mL). In silico analysis also revealed enervated binding energy (-4.30 to -5.02kcal/mol) and inhibition constant (704.18-210.26µM) wherein 5, 7, 8, 9 and 10 showed specific interaction with the receptor while rest were non-specific. Except butanol fraction and Gardenin E, others were potently inhibited the cathepsin D activity with non-specific interaction and better binding energy (-5.78 to -7.24kcal/mol) and inhibition constant (57.87-4.90µM). In conclusion, it can be interpreted that isolated polymethoxyflavones (Gardenin B, 5-Desmethylnobiletin, Gardenin E) could be taken up as a lead for target specific studies. Methanol extract and chloroform fraction prevails in all the tested activity therefore cumulative and composite intervention of polymethoxyflavones present in it reveals its pharmacological attributes and traditional value.


Asunto(s)
Gardenia/química , Extractos Vegetales/farmacología , Hidrocarburos Policíclicos Aromáticos/farmacología , Resinas de Plantas/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Compuestos de Bifenilo , Línea Celular Tumoral , Simulación por Computador , Humanos , Estructura Molecular , Picratos , Extractos Vegetales/química , Hidrocarburos Policíclicos Aromáticos/química
10.
BMC Genomics ; 15: 588, 2014 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-25015319

RESUMEN

BACKGROUND: Ocimum L. of family Lamiaceae is a well known genus for its ethnobotanical, medicinal and aromatic properties, which are attributed to innumerable phenylpropanoid and terpenoid compounds produced by the plant. To enrich genomic resources for understanding various pathways, de novo transcriptome sequencing of two important species, O. sanctum and O. basilicum, was carried out by Illumina paired-end sequencing. RESULTS: The sequence assembly resulted in 69117 and 130043 transcripts with an average length of 1646 ± 1210.1 bp and 1363 ± 1139.3 bp for O. sanctum and O. basilicum, respectively. Out of the total transcripts, 59648 (86.30%) and 105470 (81.10%) from O. sanctum and O. basilicum, and respectively were annotated by uniprot blastx against Arabidopsis, rice and lamiaceae. KEGG analysis identified 501 and 952 transcripts from O. sanctum and O. basilicum, respectively, related to secondary metabolism with higher percentage of transcripts for biosynthesis of terpenoids in O. sanctum and phenylpropanoids in O. basilicum. Higher digital gene expression in O. basilicum was validated through qPCR and correlated to higher essential oil content and chromosome number (O. sanctum, 2n = 16; and O. basilicum, 2n = 48). Several CYP450 (26) and TF (40) families were identified having probable roles in primary and secondary metabolism. Also SSR and SNP markers were identified in the transcriptomes of both species with many SSRs linked to phenylpropanoid and terpenoid pathway genes. CONCLUSION: This is the first report of a comparative transcriptome analysis of Ocimum species and can be utilized to characterize genes related to secondary metabolism, their regulation, and breeding special chemotypes with unique essential oil composition in Ocimum.


Asunto(s)
Ocimum/genética , Transcriptoma , Hibridación Genómica Comparativa , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Bases de Datos Genéticas , Genoma de Planta , Redes y Vías Metabólicas/genética , Ácido Mevalónico/química , Ácido Mevalónico/metabolismo , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Terpenos/química , Terpenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
J Sep Sci ; 36(14): 2373-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23686893

RESUMEN

Vitex trifolia L. is an important Indian medicinal plant with diverse pharmacological properties. In a recent study, we reported the isolation and antitubercular activity evaluation of three new diterpenoids from its leaves; here we have developed a validated rapid, simple, precise, and accurate high-performance TLC method for the simultaneous quantification of isolated diterpenoids in V. trifolia. Diterpenoids, 6α,7α-diacetoxy-13-hydroxy-8(9),14-labdadien (A), 13-hydroxy-5(10),14-halimadien-6-one (B), and 9-hydroxy-13(14)-labden-16,15-olide (C) were separated on silica gel 60F254 high-performance TLC plates using chloroform/acetone (98:2, v/v) as mobile phase. The quantitation of diterpenoids was carried out using densitometric reflection/absorption mode at 610 nm after postchromatographic derivatization using a vanillin/sulfuric acid reagent. A precise and accurate quantification can be performed for compounds A and B in the linear working concentration range of 333-1000 ng/band and for C in the range of 670-2000 ng/band with good correlations (r = 0.9984, 0.9991, and 0.9994, respectively). The method was validated for peak purity, precision, accuracy, robustness, LOD, and LOQ, as per the ICH guidelines. The method reported here is simple, reproducible and may be applied for the quantitative analysis of the above diterpenoids in the leaves of V. trifolia.


Asunto(s)
Cromatografía en Capa Delgada/métodos , Diterpenos/análisis , Extractos Vegetales/análisis , Vitex/química , Diterpenos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química
12.
Phytomedicine ; 20(2): 124-32, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23219341

RESUMEN

Lymphatic filariasis continues to be a major health problem in tropical and subtropical countries. A macrofilaricidal agent capable of eliminating adult filarial parasites is urgently needed. Platyphyllenone (A), alusenone (B), hirustenone (C) and hirsutanonol (D) are important biologically active diarylheptanoids present in Alnus nepalensis. In the present study, we report the antifilarial activity in diarylheptanoids isolated from the leaves of A. nepalensis. Out of four compounds (A-D) tested in vitro one has shown promising anti-filarial activity both in vitro and in vivo studies. This is the first ever report on antifilarial efficacy of a compound of the plant and warrants further studies around this scaffold. In addition, a sensitive, selective and robust densitometric high-performance thin-layer chromatographic method was developed and validated for the above four biomarker compounds. The separation was performed on silica gel 60F(254) high-performance thin layer chromatography plates using chloroform:methanol (9:1, v/v) as mobile phase. The quantitation of marker compounds was carried out using densitometric reflection/absorption mode at 600 nm after post-chromatographic derivatization using vanillin-sulfuric acid reagent. The method was validated for peak purity, precision, robustness, limit of detection (LOD) and quantitation (LOQ) etc., as per the International Conference on Harmonization (ICH) guidelines.


Asunto(s)
Alnus/química , Diarilheptanoides/farmacología , Filariasis/tratamiento farmacológico , Filaricidas/farmacología , Fitoterapia/métodos , Hojas de la Planta/química , Altitud , Animales , Brugia Malayi , Diarilheptanoides/química , Diarilheptanoides/aislamiento & purificación , Femenino , Filariasis/parasitología , Filaricidas/química , Filaricidas/aislamiento & purificación , Gerbillinae , India , Masculino , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología
13.
Biomed Chromatogr ; 25(6): 641-5, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20845375

RESUMEN

The influence of active fraction isolated from pods of an indigenous plant, Moringa oleifera (MoAF) was studied on the pharmacokinetic profile of the orally administered frontline anti-tuberculosis drug rifampicin (20 mg/kg b.w.) in Swiss albino mice. The antibiotic rifampicin alone and in combination with MoAF (0.1 mg/kg b.w.) was administered orally and heparanized blood samples were collected from the orbital plexus of mice for plasma separation at 0, 1, 2, 3, 4 and 5 h, post treatment. Plasma rifampicin concentration, pharmacokinetic parameters and drug metabolizing enzyme (cytochrome P-450) activity were determined. The pharmacokinetic data revealed that MoAF-treated animals had significantly increased rifampicin plasma concentration, C(max), K(el), t(½(a)), t(½(el)), K(a) and AUC as well as inhibited rifampicin-induced cytochrome P-450 activity. In conclusion, the result of this study suggested that the bioavailability-enhancing property of MoAF may help to lower the dosage level and shorten the treatment course of rifampicin.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Moringa oleifera/química , Extractos Vegetales/farmacología , Rifampin/farmacocinética , Animales , Área Bajo la Curva , Disponibilidad Biológica , Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Femenino , Masculino , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/enzimología , Rifampin/sangre
14.
Planta Med ; 76(13): 1468-72, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20301056

RESUMEN

Due to the high demand and low yield of the anti-malarial drug artemisinin in natural populations of Artemisia annua (Quinghao), an attempt has been made to enhance the artemisinin content through 4 cycles of recurrent selection (C(0)-C(3)) using selected genotypic and phenotypic traits. Based on their phenotypic and genotypic characteristics, the top 5% plants of each cycle were selected, and their seedlings were planted in poly-cross block to produce seeds for the subsequent generation. A significant increase in the artemisinin content (0.15% in C (0) to 1.16% in C (3), i.e., about 40% genetic gain over the generation) was observed. This enhancement was directly correlated with the plant height and branching intensity in all four cycles. Similarly, the PCV (phenotypic coefficient of variation) and GCV (genotypic coefficient of variation) have been observed to have a higher value for artemisinin content. The DNA marker (MAP 12) with relation to artemisinin was also identified for high yielding genotypes in all four cycles of selection. Over the four cycles of recurrent selection, the plant developed an oval appearance (Variety: CIM-Arogya) and a high artemisinin content (1.16%).


Asunto(s)
Antimaláricos/análisis , Artemisia annua , Artemisininas/análisis , ADN de Plantas , Extractos Vegetales/química , Carácter Cuantitativo Heredable , Selección Genética , Artemisia annua/química , Artemisia annua/genética , Artemisia annua/crecimiento & desarrollo , Cruzamiento , Marcadores Genéticos , Genotipo , Fenotipo , Plantones , Semillas
15.
Planta Med ; 75(1): 59-61, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19031368

RESUMEN

Bidens pilosa is used in folk medicine for various applications due to the presence of polyacetylenes, flavonoids, terpenoids, phenylpropanoids and others. Bioactivity-guided fractionation of different extracts of B. pilosa leaf showed potential in vitro anticancer and antimalarial activity and led to the identification of a potential marker compound, phenyl-1,3,5-heptatriyne. Erythrocyte osmotic fragility experiments revealed the various extracts as well as the marker component's toxicity profiles on normal blood cells.


Asunto(s)
Alquinos/farmacología , Antimaláricos/farmacología , Antineoplásicos Fitogénicos/farmacología , Bidens/química , Medicamentos Herbarios Chinos/farmacología , Alquinos/química , Alquinos/aislamiento & purificación , Animales , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Eritrocitos/efectos de los fármacos , Humanos , Fragilidad Osmótica/efectos de los fármacos , Hojas de la Planta/química , Plasmodium falciparum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA