Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 27(10): 1731-7, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25641076

RESUMEN

Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems.


Asunto(s)
Terapia por Estimulación Eléctrica/instrumentación , Electrodos , Corazón , Aleaciones/química , Animales , Elastómeros , Impedancia Eléctrica , Terapia por Estimulación Eléctrica/métodos , Diseño de Equipo , Fractales , Corazón/fisiología , Corazón/fisiopatología , Iridio/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Imagen Óptica , Compuestos de Platino/química , Poliestirenos/química , Conejos , Elastómeros de Silicona , Compuestos de Plata/química , Análisis Espectral , Tiofenos/química , Titanio/química
2.
IEEE Trans Biomed Eng ; 61(5): 1466-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24759279

RESUMEN

Defibrillation is one of the most successful and widely recognized applications of electrotherapy. Yet the historical road to its first successful application in a patient and the innovative adaptation to an implantable device is marred with unexpected turns, political and personal setbacks, and public and scientific condemnation at each new idea. Driven by dedicated scientists and ever-advancing creative applications of new technologies, from electrocardiography to high density mapping and computational simulations, the field of defibrillation persevered and continued to evolve to the life-saving tool it is today. In addition to critical technological advances, the history of defibrillation is also marked by the plasticity of the theory of defibrillation. The advancing theories of success have propelled the campaign for reducing the defibrillation energy requirement, instilling hope in the development of a painless and harmless electrical defibrillation strategy.


Asunto(s)
Cardioversión Eléctrica , Sistema de Conducción Cardíaco/fisiología , Animales , Cardioversión Eléctrica/historia , Cardioversión Eléctrica/instrumentación , Cardioversión Eléctrica/métodos , Corazón/fisiología , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Conejos , Fibrilación Ventricular/fisiopatología , Fibrilación Ventricular/terapia
3.
Nat Commun ; 5: 3329, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24569383

RESUMEN

Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy.


Asunto(s)
Algoritmos , Corazón/fisiología , Membranas Artificiales , Modelos Cardiovasculares , Pericardio/fisiología , Animales , Elastómeros/química , Electrocardiografía/instrumentación , Electrocardiografía/métodos , Electrodos , Técnicas Electrofisiológicas Cardíacas/instrumentación , Técnicas Electrofisiológicas Cardíacas/métodos , Mapeo Epicárdico/instrumentación , Mapeo Epicárdico/métodos , Corazón/anatomía & histología , Sistema de Conducción Cardíaco/fisiología , Concentración de Iones de Hidrógeno , Imagenología Tridimensional , Técnicas In Vitro , Pericardio/anatomía & histología , Conejos , Reproducibilidad de los Resultados , Semiconductores , Siliconas/química , Temperatura
4.
J Am Coll Cardiol ; 63(1): 40-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24076284

RESUMEN

OBJECTIVES: The goal of this study was to develop a low-energy, implantable device-based multistage electrotherapy (MSE) to terminate atrial fibrillation (AF). BACKGROUND: Previous attempts to perform cardioversion of AF by using an implantable device were limited by the pain caused by use of a high-energy single biphasic shock (BPS). METHODS: Transvenous leads were implanted into the right atrium (RA), coronary sinus, and left pulmonary artery of 14 dogs. Self-sustaining AF was induced by 6 ± 2 weeks of high-rate RA pacing. Atrial defibrillation thresholds of standard versus experimental electrotherapies were measured in vivo and studied by using optical imaging in vitro. RESULTS: The mean AF cycle length (CL) in vivo was 112 ± 21 ms (534 beats/min). The impedances of the RA-left pulmonary artery and RA-coronary sinus shock vectors were similar (121 ± 11 Ω vs. 126 ± 9 Ω; p = 0.27). BPS required 1.48 ± 0.91 J (165 ± 34 V) to terminate AF. In contrast, MSE terminated AF with significantly less energy (0.16 ± 0.16 J; p < 0.001) and significantly lower peak voltage (31.1 ± 19.3 V; p < 0.001). In vitro optical imaging studies found that AF was maintained by localized foci originating from pulmonary vein-left atrium interfaces. MSE Stage 1 shocks temporarily disrupted localized foci; MSE Stage 2 entrainment shocks continued to silence the localized foci driving AF; and MSE Stage 3 pacing stimuli enabled consistent RA-left atrium activation until sinus rhythm was restored. CONCLUSIONS: Low-energy MSE significantly reduced the atrial defibrillation thresholds compared with BPS in a canine model of AF. MSE may enable painless, device-based AF therapy.


Asunto(s)
Fibrilación Atrial/terapia , Cardioversión Eléctrica/métodos , Terapia por Estimulación Eléctrica/instrumentación , Electrodos Implantados , Atrios Cardíacos/fisiopatología , Animales , Fibrilación Atrial/fisiopatología , Cateterismo Cardíaco , Modelos Animales de Enfermedad , Perros , Electrocardiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA