Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Prod Res ; 33(23): 3426-3431, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29781304

RESUMEN

This study investigated the antioxidant activity of Cuphea glutinosa (CG) and its effect on Na+, K+-ATPase from cardiac muscle. The ethanolic extract showed higher antioxidant capacity compared to aqueous and ethyl acetate fraction. Ethyl acetate fraction showed ß-sitosterol-3-O-ß-glucoside, kaempferol, quercetin, isoquercetin, gallic acid methyl ester, and gallic acid. The ethanolic extract also reduced the Na+,K+-ATPase activity. CG presented a promising antioxidant activity and inhibitory effect on the Na+, K+-ATPase activity, supporting biochemical evidences the popular use of this plant in the treatment of heart failure.


Asunto(s)
Antioxidantes/aislamiento & purificación , Cuphea/química , Fitoquímicos/química , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Animales , Antioxidantes/química , Brasil , Corazón/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Quempferoles/aislamiento & purificación , Miocardio , Extractos Vegetales/química , Quercetina/aislamiento & purificación
2.
Biomed Pharmacother ; 108: 1731-1738, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30372876

RESUMEN

This study evaluated the effects of caffeine in combination with high-intensity interval training (HIIT) on sensitivity to glucocorticoids and proliferation of lymphocytes, IL-6 and IL-10 levels and NTPDase, adenosine deaminase (ADA) and acetylcholinesterase (AChE) activity in rat lymphocytes. The animals were divided into groups: control, caffeine 4 mg/kg, caffeine 8 mg/kg, HIIT, HIIT plus caffeine 4 mg/kg and HIIT plus caffeine 8 mg/kg. The rats were trained three times a week for 6 weeks for a total workload 23% of body weight at the end of the experiment. Caffeine was administered orally 30 min before the training session. When lymphocytes were stimulated with phytohaemagglutinin no changes were observed in proliferative response between trained and sedentary animals; however, when caffeine was associated with HIIT an increase in T lymphocyte proliferation and in the sensitivity of lymphocytes to glucocorticoids occurred. ATP and ADP hydrolysis was decreased in the lymphocytes of the animals only trained and caffeine treatment prevented alterations in ATP hydrolysis. HIIT caused an increase in the ADA and AChE activity in lymphocytes and this effect was more pronounced in rats trained and supplemented with caffeine. The level of IL-6 was increased while the level of IL-10 was decreased in trained animals (HIIT) and caffeine was capable of preventing this exercise effect. Our findings suggest that caffeine ingestion attenuates, as least in part, the immune and inflammatory alterations following a prolonged HIIT protocol.


Asunto(s)
Cafeína/farmacología , Citocinas/metabolismo , Linfocitos/metabolismo , Condicionamiento Físico Animal , Receptores Colinérgicos/metabolismo , Receptores Purinérgicos/metabolismo , Transducción de Señal , Acetilcolinesterasa/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Citocinas/sangre , Glucocorticoides/farmacología , Hidrólisis , Activación de Linfocitos/efectos de los fármacos , Linfocitos/efectos de los fármacos , Masculino , Ratas Wistar , Transducción de Señal/efectos de los fármacos
3.
Metab Brain Dis ; 33(5): 1551-1562, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29882020

RESUMEN

In this work, we evaluated the effects of Psidium cattleianum (Red Type) (PcRT) fruit extract on metabolic, behavioral, and neurochemical parameters in rats fed with a highly palatable diet (HPD) consisted of sucrose (65% carbohydrates being 34% from condensed milk, 8% from sucrose and 23% from starch, 25% protein and 10% fat). Animals were divided into 4 groups: standard chow, standard chow + PcRT extract (200 mg/Kg/day by gavage), HPD, HPD + extract. The animals were treated for 150 days. Concerning chemical profiling, LC/PDA/MS/MS analysis revealed cyanidin-3-O-glucoside as the only anthocyanin in the PcRT extract. Our results showed that the animals exposed to HPD presented glucose intolerance, increased weight gain and visceral fat, as well as higher serum levels of glucose, triacylglycerol, total cholesterol, LDL-cholesterol and interleukin-6. These alterations were prevented by PcRT. In addition, HPD caused an increase in immobility time in a forced swimming test and the fruit extract prevented this alteration, indicating an antidepressant-like effect. PcRT treatment also prevented increased acetylcholinesterase activity in the prefrontal cortex caused by HPD consumption. Moreover, PcRT extract was able to restore Ca2+-ATPase activity in the prefrontal cortex, hippocampus, and striatum, as well as Na+,K+-ATPase activity in the prefrontal cortex and hippocampus. PcRT treatment decreased thiobarbituric acid-reactive substances, nitrite, and reactive oxygen species levels and prevented the reduction of superoxide dismutase activity in all cerebral structures of the HPD group. Additionally, HPD decreased catalase in the hippocampus and striatum. However, the extract prevented this change in the hippocampus. Our results showed that this berry extract has antihyperglycemic and antihyperlipidemic effects, and neuroprotective properties, proving to be a potential therapeutic agent for individuals with metabolic syndrome.


Asunto(s)
Antocianinas/farmacología , Antioxidantes/farmacología , Glucósidos/farmacología , Hipoglucemiantes/farmacología , Hipolipemiantes/farmacología , Síndrome Metabólico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Psidium/química , Animales , Antocianinas/química , Antidepresivos/química , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antioxidantes/química , Conducta Animal/efectos de los fármacos , Brasil , Catalasa/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dieta de Carga de Carbohidratos/efectos adversos , Modelos Animales de Enfermedad , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/metabolismo , Glucósidos/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Hipolipemiantes/química , Hipolipemiantes/uso terapéutico , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem , Aumento de Peso/efectos de los fármacos
4.
Mol Nutr Food Res ; 62(16): e1800050, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29888863

RESUMEN

SCOPE: Beneficial effects produced by polyphenolic compounds are used in the treatment of various diseases, including diabetes. Thus it is relevant to investigate the protective effect of lingonberry extract (LB) on the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (5'-NT), and adenosine deaminase (ADA); the density of A1, A2A, and P2×7 receptors; production of reactive species (RS); and the levels of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex of streptozotocin-induced diabetic rats. METHODS AND RESULTS: Animals were divided into five groups (n = 10): control/saline; control/LB 50 mg kg-1 ; diabetic/saline; diabetic/LB 25 mg kg-1 ; and diabetic/LB 50 mg kg-1 ; and treated for 30 days. Our results demonstrate that the treatment with LB increased NTPDase activity in the diabetic/LB 50 group compared to diabetic/saline group. Western blot analysis showed that LB restored the density of purinergic receptors to the approximate values of the control/saline group. An increase in the levels of RS and TBARS was observed in the diabetic/saline group compared with the control/saline group, and treatment with LB can prevent this increase. CONCLUSION: This study showed that LB could reverse the modifications found in the diabetic state, suggesting that lingonberry may be a coadjuvant in the treatment of diabetes.


Asunto(s)
Aminohidrolasas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores Purinérgicos/efectos de los fármacos , Vaccinium vitis-Idaea , 5'-Nucleotidasa/metabolismo , Animales , Glucemia/análisis , Corteza Cerebral/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Ratas Wistar , Estreptozocina
5.
Cell Mol Neurobiol ; 38(5): 1107-1121, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29556871

RESUMEN

Altered astrocytic function is a contributing factor to the development of neurological diseases and neurodegeneration. Berry fruits exert neuroprotective effects by modulating pathways involved in inflammation, neurotransmission, and oxidative stress. The aim of this study was to examine the effects of the lingonberry extract on cellular viability and oxidative stress in astrocytes exposed to lipopolysaccharide (LPS). In the reversal protocol, primary astrocytic cultures were first exposed to 1 µg/mL LPS for 3 h and subsequently treated with lingonberry extract (10, 30, 50, and 100 µg/mL) for 24 and 48 h. In the prevention protocol, exposure to the lingonberry extract was performed before treatment with LPS. In both reversal and prevention protocols, the lingonberry extracts, from 10 to 100 µg/mL, attenuated LPS-induced increase in reactive oxygen species (around 55 and 45%, respectively, P < 0.01), nitrite levels (around 50 and 45%, respectively, P < 0.05), and acetylcholinesterase activity (around 45 and 60%, respectively, P < 0.05) in astrocytic cultures at 24 and 48 h. Also, in both reversal and prevention protocols, the lingonberry extract also prevented and reversed the LPS-induced decreased cellular viability (around 45 and 90%, respectively, P < 0.05), thiol content (around 55 and 70%, respectively, P < 0.05), and superoxide dismutase activity (around 50 and 145%, respectively, P < 0.05), in astrocytes at both 24 and 48 h. Our findings suggested that the lingonberry extract exerted a glioprotective effect through an anti-oxidative mechanism against LPS-induced astrocytic damage.


Asunto(s)
Acetilcolinesterasa/metabolismo , Astrocitos/metabolismo , Lipopolisacáridos/farmacología , Neuroglía/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Vaccinium vitis-Idaea/química , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Neuroglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
6.
J Ethnopharmacol ; 194: 108-116, 2016 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-27590731

RESUMEN

ETHOPHARMACOLOGICAL RELEVANCE: Uncaria tomentosa (Willd.) DC. (Rubiaceae) (Ut), also known as cat's claw, is a woody liana widely spread throughout the Amazon rainforest of Central and South America, containing many chemical constituents such as oxindole alkaloids, which are responsible for various biological activities. Since ancient times, the indigenous people of Peru have used it as a bark infusion for the treatment of a wide range of health problems gastric ulcers, arthritis and rheumatism. Recently, Ut is distributed worldwide and used as an immunomodulatory and anti-inflammatory herbal remedy. Additionally, U. tomentosa also has antitumural activity. However, little is known about the action of U. tomentosa on the purinergic system mechanisms, which is involved in tumor progression. AIM OF THE STUDY: Considering the pharmacological properties of U. tomentosa, we sought to evaluate the hydroalcoholic extract U tomentosa is able to influence the purinergic system in breast cancer cells, MDA-MB-231. Through the activity and expression of ectonucleotidases (NTPDase - CD39; Ecto-5'-nucleotidase - CD73) and purinergic repceptores (P2X7 and A1). MATERIALS AND METHODS: A hydroalcoholic extract was prepared in two concentrations, 250 and 500µg/mL. (Ut250; Ut500). The effect of these concentrations on the activity and expression of ectonucleotidases, as well as on the density of purinergic receptors were investigated in MDA-MB-231 breast cancer cells. Cells were treated with the hydroalcoholic extract of Uncaria tomentosa and/or doxorubicin (Doxo 1µM; Ut250+Doxo; Ut500+Doxo) for 24h. RESULTS: Although the results were not significant for the hydrolysis of the ATP, they presented an increase in the ADP hydrolysis in the Ut500+Doxo group when compared to the control group. Additionally, the activity of 5'-nucleotidase was inhibited in all groups when compared with the untreated group of cells. Inhibition of the enzyme was more evident in groups with U. tomentosa per se. The expression of CD39 was increased in the Ut250 and Ut250+Doxo groups when compared to the control group. No changes were found in the CD73 expression. Furthermore, a reduction in the density of the P2X7 receptor in all treated groups was detected. On the other hand, the density of the A1 receptor increased in all groups compared to the control group, with the exception of the Ut500+Doxo group. CONCLUSION: Therefore, we conclude that hydroalcoholic extract of U. tomentosa may be responsible for the reduction of adenosine levels in the extracellular medium, which accelerates tumor progression. Interestingly, the dysregulation of A1 and P2X7 receptors in the MDA-MB-231 cells exacerbate the proliferation of this cells and U. tomentosa treatment may be stimulate the antitumor activity of adenosine A1 receptor and control the P2X7 effects. Our study demonstrates the significant participation of purinergic pathway in the regulation of MDA-MB-231 progression; additionally, U. tomentosa treatment alone or combined with chemotherapy may favor the action of doxorubicin.


Asunto(s)
5'-Nucleotidasa/metabolismo , Nucleótidos de Adenina/metabolismo , Uña de Gato/química , Receptor de Adenosina A1/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Humanos , Extractos Vegetales
7.
Mol Cell Biochem ; 388(1-2): 277-86, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24370728

RESUMEN

Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na(+), K(+)-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (n = 5-10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na(+), K(+)-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na(+), K(+)-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cafeína/farmacología , Ácido Clorogénico/farmacología , Café , Diabetes Mellitus Experimental/tratamiento farmacológico , Acetilcolinesterasa/biosíntesis , Animales , Ansiedad/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Corteza Cerebral/metabolismo , Masculino , Memoria/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Porfobilinógeno Sintasa/biosíntesis , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Estreptozocina , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
8.
Physiol Behav ; 106(5): 664-9, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22579739

RESUMEN

Cigarette smoke, a widely spread habit, is associated with a decline in cognitive function and studies have demonstrated that curcumin (Cur), an Indian spice, possesses a strong neuroprotective potential. Considering the relevance of investigating dietary compounds this study aimed to investigate the effect of Cur on memory and acetylcholinesterase (AChE) activity in brain structures and blood of cigarette smoke-exposed rats. Male Wistar rats were treated with curcumin and cigarette smoke, once a day, 5 days each week, for 30 days. The experimental procedures were divided in two sets of experiments. In the first, the animals were divided into 4 groups: Vehicle (corn oil), Cur 12.5 mg/kg, Cur 25 mg/kg and Cur 50 mg/kg. In the second, the animals were divided into 5 groups: Vehicle (corn oil), Smoke, Smoke plus Cur 12.5 mg/kg, Smoke plus Cur 25 mg/kg and Smoke plus Cur 50 mg/kg. Treatment with Cur significantly prevented the decreased latency and cholinergic alterations in cigarette smoke-exposed rats. These AChE alterations could suggest a role in the memory impairment promoted by cigarette smoke-exposure and point toward the potential of Cur to modulate cholinergic neurotransmission and, consequently, improve cognition deficits induced by smoke. This study suggests that the dietary compound Cur may be involved in cholinergic system modulation and as a consequence exert an effect on learning and memory.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/tratamiento farmacológico , Curcumina/uso terapéutico , Contaminación por Humo de Tabaco/efectos adversos , Análisis de Varianza , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Trastornos del Conocimiento/enzimología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA