RESUMEN
BACKGROUND: Biopharmaceutical products (BPs) are widely used to treat autoimmune diseases, but immunogenicity limits their efficacy for an important proportion of patients. Our knowledge of patient-related factors influencing the occurrence of antidrug antibodies (ADAs) is still limited. METHODS AND FINDINGS: The European consortium ABIRISK (Anti-Biopharmaceutical Immunization: prediction and analysis of clinical relevance to minimize the RISK) conducted a clinical and genomic multicohort prospective study of 560 patients with multiple sclerosis (MS, n = 147), rheumatoid arthritis (RA, n = 229), Crohn's disease (n = 148), or ulcerative colitis (n = 36) treated with 8 different biopharmaceuticals (etanercept, n = 84; infliximab, n = 101; adalimumab, n = 153; interferon [IFN]-beta-1a intramuscularly [IM], n = 38; IFN-beta-1a subcutaneously [SC], n = 68; IFN-beta-1b SC, n = 41; rituximab, n = 31; tocilizumab, n = 44) and followed during the first 12 months of therapy for time to ADA development. From the bioclinical data collected, we explored the relationships between patient-related factors and the occurrence of ADAs. Both baseline and time-dependent factors such as concomitant medications were analyzed using Cox proportional hazard regression models. Mean age and disease duration were 35.1 and 0.85 years, respectively, for MS; 54.2 and 3.17 years for RA; and 36.9 and 3.69 years for inflammatory bowel diseases (IBDs). In a multivariate Cox regression model including each of the clinical and genetic factors mentioned hereafter, among the clinical factors, immunosuppressants (adjusted hazard ratio [aHR] = 0.408 [95% confidence interval (CI) 0.253-0.657], p < 0.001) and antibiotics (aHR = 0.121 [0.0437-0.333], p < 0.0001) were independently negatively associated with time to ADA development, whereas infections during the study (aHR = 2.757 [1.616-4.704], p < 0.001) and tobacco smoking (aHR = 2.150 [1.319-3.503], p < 0.01) were positively associated. 351,824 Single-Nucleotide Polymorphisms (SNPs) and 38 imputed Human Leukocyte Antigen (HLA) alleles were analyzed through a genome-wide association study. We found that the HLA-DQA1*05 allele significantly increased the rate of immunogenicity (aHR = 3.9 [1.923-5.976], p < 0.0001 for the homozygotes). Among the 6 genetic variants selected at a 20% false discovery rate (FDR) threshold, the minor allele of rs10508884, which is situated in an intron of the CXCL12 gene, increased the rate of immunogenicity (aHR = 3.804 [2.139-6.764], p < 1 × 10-5 for patients homozygous for the minor allele) and was chosen for validation through a CXCL12 protein enzyme-linked immunosorbent assay (ELISA) on patient serum at baseline before therapy start. CXCL12 protein levels were higher for patients homozygous for the minor allele carrying higher ADA risk (mean: 2,693 pg/ml) than for the other genotypes (mean: 2,317 pg/ml; p = 0.014), and patients with CXCL12 levels above the median in serum were more prone to develop ADAs (aHR = 2.329 [1.106-4.90], p = 0.026). A limitation of the study is the lack of replication; therefore, other studies are required to confirm our findings. CONCLUSION: In our study, we found that immunosuppressants and antibiotics were associated with decreased risk of ADA development, whereas tobacco smoking and infections during the study were associated with increased risk. We found that the HLA-DQA1*05 allele was associated with an increased rate of immunogenicity. Moreover, our results suggest a relationship between CXCL12 production and ADA development independent of the disease, which is consistent with its known function in affinity maturation of antibodies and plasma cell survival. Our findings may help physicians in the management of patients receiving biotherapies.
Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/genética , Productos Biológicos/inmunología , Adalimumab/uso terapéutico , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Productos Biológicos/uso terapéutico , Terapia Biológica/métodos , Estudios de Cohortes , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Cadenas alfa de HLA-DQ/genética , Humanos , Inmunosupresores/uso terapéutico , Infliximab/uso terapéutico , Interferón beta-1a/uso terapéutico , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Estudios Prospectivos , Rituximab/uso terapéuticoRESUMEN
Predicting immunogenicity for biotherapies using patient and drug-related factors represents nowadays a challenging issue. With the growing ability to collect massive amount of data, machine learning algorithms can provide efficient predictive tools. From the bio-clinical data collected in the multi-cohort of autoimmune diseases treated with biotherapies from the ABIRISK consortium, we evaluated the predictive power of a custom-built random survival forest for predicting the occurrence of anti-drug antibodies. This procedure takes into account the existence of a population composed of immune-reactive and immune-tolerant subjects as well as the existence of a tiny expected proportion of relevant predictive variables. The practical application to the ABIRISK cohort shows that this approach provides a good predictive accuracy that outperforms the classical survival random forest procedure. Moreover, the individual predicted probabilities allow to separate high and low risk group of patients. To our best knowledge, this is the first study to evaluate the use of machine learning procedures to predict biotherapy immunogenicity based on bioclinical information. It seems that such approach may have potential to provide useful information for the clinical practice of stratifying patients before receiving a biotherapy.