Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bone ; 49(5): 1108-16, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21820093

RESUMEN

The effect of hesperidin (Hp) and naringin (Nar), two major citrus flavanones, on the regulation of bone metabolism was examined in male senescent rats. Twenty -month -old gonad-intact male Wistar rats received a casein-based diet supplemented with or without either 0.5% hesperidin (Hp), 0.5% naringin (Nar) or a mix of both flavanones (Hp+Nar, 0.25% each). After 3 months, daily Hp intake significantly improved femoral bone integrity as reflected by improvements in total and regional bone mineral densities (BMD) (9.7%-12.3% improvements, p<0.05) and trabecular bone volume fraction (24.3% improvement, p<0.05) at the femur compared with control group. In contrast, naringin exerted site-specific effects on BMD (10.2% improvement at the distal metaphyseal area, p<0.05) and no further benefit to bone mass was observed with the mix of flavanones. Bone resorption (DPD) was significantly attenuated by Hp and Nar given alone (40.3% and 26.8% lower compared to control, p<0.05, respectively) but not by the mixture of the two. All treatments significantly reduced expression of inflammatory markers to a similar extent (IL-6, 81.0-87.9% reduction; NO, 34.7-39.5% reduction) compared to control. Bone formation did not appear to be strongly affected by any of the treatments (no effect on osteocalcin levels, modest modulation of tibial BMP-2 mRNA). However, as previously reported, plasma lipid-lowering effects were observed with Hp and Nar alone (34.1%-45.1% lower for total cholesterol and triglycerides compared to control, p<0.05) or together (46% lower for triglycerides, p<0.05). Surprisingly the plasma circulating level of naringin (8.15µM) was >5-fold higher than that of hesperidin (1.44µM) at equivalent doses (0.5%) and a linear reduction in plasma levels was observed upon co-administration (0.25% each) indicating absence of competition for their intestinal absorption sites and metabolism. The higher efficacy of Hp at a lower plasma concentration than naringin, as well as the identification of the major circulating metabolite of hesperidin (hesperetin-7-O-glucuronide) underlines the importance of flavanone bioavailability and metabolism in their biological efficacy and suggests a structure-function relationship in the mechanism of action of the active metabolites.


Asunto(s)
Huesos/efectos de los fármacos , Citrus/química , Flavanonas/farmacología , Envejecimiento , Animales , Secuencia de Bases , Peso Corporal/efectos de los fármacos , Densidad Ósea , Cartilla de ADN , Flavanonas/farmacocinética , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Wistar , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
2.
Pediatr Res ; 66(5): 513-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19668107

RESUMEN

Peak bone mass is a major determinant of osteoporosis pathogenesis during aging. Respective influences of energy and protein supplies on skeletal growth remains unclear. We investigated the effect of a 5-mo dietary restriction on bone status in young rats randomized into six groups (n = 10 per group). Control animals were fed a diet containing a normal (13%) (C-NP) or a high-protein content (26%) (C-HP). The other groups received a 40% protein energy-restricted diet (PER-NP and PER-HP) or a 40% energy-restricted diet (ER-NP and ER-HP). High-protein intake did not modulate bone acquisition, although a metabolic acidosis was induced and calcium retention impaired. PER and ER diets were associated with a decrease in femoral bone mineral density. The compensation for protein intake in energy-restricted conditions induced a bone sparing effect. Plasma osteocalcin (OC) and urinary deoxypyridinoline (DPD) assays revealed a decreased OC/DPD ratio in restricted rats compared with C animals, which was far more reduced in PER than in ER groups. Circulating IGF-1 levels were lowered by dietary restrictions. In conclusion, both energy and protein deficiencies may contribute to impairment in peak bone mass acquisition, which may affect skeleton strength and potentially render individuals more susceptible to osteoporosis.


Asunto(s)
Huesos/patología , Suplementos Dietéticos , Aminoácidos/orina , Alimentación Animal , Animales , Fenómenos Biomecánicos , Densidad Ósea , Fémur/anatomía & histología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Iones , Masculino , Osteocalcina/sangre , Osteoporosis/patología , Ratas , Ratas Wistar
3.
Br J Nutr ; 102(7): 976-84, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19393110

RESUMEN

Hesperidin (Hp), a citrus flavonoid predominantly found in oranges, shows bone-sparing effects in ovariectomised (OVX) animals. In human subjects, the bioavailability of Hp can be improved by the removal of the rhamnose group to yield hesperetin-7-glucoside (H-7-glc). The aim of the present work was to test whether H-7-glc was more bioavailable and therefore more effective than Hp in the prevention of bone loss in the OVX rat. Adult 6-month-old female Wistar rats were sham operated or OVX, then pair fed for 90 d a casein-based diet supplemented or not with freeze-dried orange juice enriched with Hp or H-7-glc at two dose equivalents of the hesperetin aglycone (0.25 and 0.5 %). In the rats fed 0.5 %, a reduction in OVX-induced bone loss was observed regarding total bone mineral density (BMD):+7.0 % in OVX rats treated with Hp (HpOVX) and +6.6 % in OVX rats treated with H-7-glc (H-7-glcOVX) v. OVX controls (P < 0.05). In the rats fed 0.25 % hesperetin equivalents, the H-7-glcOVX group showed a 6.6 % improvement in total femoral BMD v. the OVX controls (P < 0.05), whereas the Hp diet had no effect at this dose. The BMD of rats fed 0.25 % H-7-glc was equal to that of those given 0.5 % Hp, but was not further increased at 0.5 % H-7-glc. Plasma hesperetin levels and relative urinary excretion were significantly enhanced in the H-7-glc v. Hp groups, and the metabolite profile showed the absence of eriodictyol metabolites and increased levels of hesperetin sulphates. Taken together, improved bioavailability of H-7-glc may explain the more efficient bone protection of this compound.


Asunto(s)
Suplementos Dietéticos , Hesperidina/análogos & derivados , Hesperidina/farmacocinética , Osteoporosis/prevención & control , Animales , Disponibilidad Biológica , Densidad Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Femenino , Fémur/patología , Fémur/fisiopatología , Hesperidina/uso terapéutico , Tamaño de los Órganos/efectos de los fármacos , Ovariectomía , Ratas , Ratas Wistar , Útero/patología , Aumento de Peso/efectos de los fármacos
4.
J Nutr ; 138(4): 718-24, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18356326

RESUMEN

High dietary protein intake generates endogenous acid production, which may adversely affect bone health. Alkaline potassium citrate (Kcit)(2) may contribute to the neutralization of the protein-induced metabolic acidosis. We investigated the impact of 2 levels of protein intake and Kcit supplementation on acid-base metabolism and bone status in rats. Two-month-old Wistar male rats were randomly assigned to 4 groups (n = 30 per group). Two groups received a normal-protein content (13%) (NP) or a high-protein (HP) content diet (26%) for 19 mo. The 2 other groups received identical diets supplemented with Kcit (3.60%) (NPKcit and HPKcit). Rats were pair-fed based on the ad libitum intake of the HP group. At 9, 16, and 21 mo of age, 10 rats of each group were killed. The HP diet induced a metabolic acidosis characterized by hypercalciuria, hypermagnesuria, and hypocitraturia at all ages. Kcit supplementation neutralized this effect, as evidenced by decreased urinary calcium and magnesium excretion by the HPKcit rats. Femoral bone mineral density, biomechanical properties, bone metabolism biomarkers (osteocalcin and deoxypyridinoline), and plasma insulin-like growth factor 1 levels were not affected by the different diets. Nevertheless, at 21 mo of age, calcium retention was reduced in the HP group. This study suggests that lifelong excess of dietary protein results in low-grade metabolic acidosis without affecting the skeleton, which may be protected by an adequate calcium supply.


Asunto(s)
Equilibrio Ácido-Base/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/farmacología , Citrato de Potasio/administración & dosificación , Citrato de Potasio/farmacología , Animales , Aniones/orina , Biomarcadores , Fenómenos Biomecánicos , Peso Corporal , Calcio/metabolismo , Cationes/orina , Suplementos Dietéticos , Esquema de Medicación , Quimioterapia Combinada , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA