Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phytochemistry ; 174: 112336, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32192964

RESUMEN

Targeting the transmissible stages of the Plasmodium parasite that develop in the human and mosquito host is a crucial strategy for malaria control and elimination. Medicinal plants offer a prolific source for the discovery of new antimalarial compounds. The recent identification of the gametocytocidal activity of lophirone E, obtained from the African plant Lophira lanceolata (Ochnaceae), inspired the evaluation of the plant also against early sporogonic stages of the parasite development. The bioassay-guided phytochemical study led to the isolation of two known lanceolins and of a new glycosylated bichalcone, named glucolophirone C. Its stereostructure, including absolute configuration of the bichalcone moiety, was elucidated by means of NMR, HRMS, ECD and computational calculations. Lanceolin B proved to be a potent inhibitor of the development of Plasmodium early sporogonic stages indicating that the plant produces two different stage-specific antimalarial agents acting on transmissible stages in the human and mosquito host.


Asunto(s)
Antimaláricos , Malaria , Ochnaceae , Animales , Humanos , Corteza de la Planta , Extractos Vegetales , Plasmodium falciparum
2.
Fitoterapia ; 137: 104188, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31158428

RESUMEN

Repeated chromatographic purifications of aerial parts of the Tunisian plant Daucus virgatus led to the isolation of four new germacranolides, named daucovirgolides I-L (2-5), along with the Plasmodium transmission-blocking agent daucovirgolide G. The chemical structures of the new compounds were defined as mono- or di-angeloylated germacrane-type sesquiterpenoids by spectroscopic (mainly 1D and 2D NMR) and spectrometric methods (ESIMS). The low potency exhibited by daucovirgolides I-L further supports the observation that strict structural requirements do exist for the Plasmodium transmission blocking activity in the daucovirgolide series. In particular, the endocyclic double bond system seems to be crucial for bioactivity.


Asunto(s)
Antimaláricos/farmacología , Apiaceae/química , Plasmodium berghei/efectos de los fármacos , Sesquiterpenos de Germacrano/farmacología , Antimaláricos/aislamiento & purificación , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas/química , Sesquiterpenos de Germacrano/química , Sesquiterpenos de Germacrano/aislamiento & purificación , Túnez
3.
Malar J ; 18(1): 35, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736813

RESUMEN

BACKGROUND: Medicinal plant research may contribute to develop new pharmacological control tools for vector borne diseases, such as malaria. METHODS: The effects of methanol extracts (ME) obtained from seed kernel of ripe and unripe Azadirachta indica fruits were studied on erythrocytic proliferation of the rodent malaria parasite Plasmodium berghei strain ANKA and on mice pro-inflammatory response, as evaluated by measuring the matrix-metalloproteinase-9 (MMP-9) and tumour necrosis factor (TNF) plasma levels, in two mouse strains (C57BL/6 and BALB/c) which are considered as prototypical of Th1 and Th2 immune response, respectively. RESULTS: ME obtained from seed kernel of unripe Azadirachta indica fruits decreased by about 30% the proportion of erythrocytes infected with the malaria parasite in C57BL/6 mice in the 4 days suppressive test. In this treatment group, MMP-9 and TNF levels were notably higher than those measured in the same mouse strain treated with the anti-malarial drug artesunate, Azadirachta indica kernel extracts from ripe fruits or solvent. In BALB/c mice, treatment with kernel extracts did not influence parasitaemia. MMP-9 and TNF levels measured in this mouse strain were notably lower than those recorded in C57BL/6 mice and did not vary among treatment groups. CONCLUSIONS: The effects of the ME on the parasite-host interactions appeared to be mouse strain-dependent, but also related to the ripening stage of the neem fruits, as only the unripe fruit seed kernel extracts displayed appreciable bioactivity.


Asunto(s)
Antimaláricos/farmacología , Azadirachta/química , Malaria/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Animales , Sistemas de Liberación de Medicamentos , Eritrocitos/parasitología , Femenino , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Plantas Medicinales/química , Semillas/química
4.
J Am Mosq Control Assoc ; 34(4): 311-314, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-31442140

RESUMEN

Detoxifying pathways of mosquitoes against the neem (Azadirachta indica) extracts are still unclear. The aim of the present study was to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters in this process in Anopheles stephensi, one of the main malaria vectors in southern Asia. Third-stage larvae of An. stephensi were fed with fish food alone or in combination with neem extract at 0.5%, 1%, 5%, and 10%. Six ABC-transporter genes from 3 different subfamilies (B, C, and G) were analyzed to assess their relative expression compared with controls. A bioassay was also performed to assess larval mortality rate at different concentrations and in combination with verapamil, an ABC-transporter inhibitor. No significant variation in the expression levels of any transporter belonging to the B, C, and G subfamilies was detected. Furthermore, the use of verapamil did not induce an increase in mortality at any of the tested neem extract concentrations, indicating that ABC transporters are not involved in the detoxification of neem extracts in An. stephensi larvae.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Anopheles/metabolismo , Azadirachta/química , Proteínas de Insectos/metabolismo , Fase I de la Desintoxicación Metabólica , Extractos Vegetales/química , Animales , Anopheles/crecimiento & desarrollo , Larva/metabolismo
5.
Phytomedicine ; 23(14): 1743-1752, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27912876

RESUMEN

BACKGROUND: NeemAzal® (NA) is a quantified extract from seed kernels of neem, Azadirachta indica A.Juss. (Meliaceae), with a wide spectrum of biological properties, classically ascribed to its limonoid content. NA contains several azadirachtins (A to L), azadirachtin A (AzaA) being its main constituent. AzaA has been shown to inhibit microgamete formation of the rodent malaria parasite Plasmodium berghei, and NA was found to completely inhibit the transmission of Plasmodium berghei to Anopheles stephensi mosquitoes when administered to gametocytemic mice at a corresponding AzaA dose of 50mg/kg before exposure to mosquitoes. PURPOSE: The present study was aimed at i) assessing the pharmacodynamics and duration of action of NA and AzaA against P. berghei exflagellation in systemic circulation in mice and ii) elucidating the transmission blocking activity (TBA) of the main NA constituents. STUDY DESIGN: The NA and AzaA pharmacodynamics on exflagellation were assessed through ex vivo exflagellation assays, while TBA of NA constituents was evaluated through in vitro ookinete development assay. METHODS: Pharmacodynamics experiments: Peripheral blood from P. berghei infected BALB/c mice with circulating mature gametocytes, were treated i.p. with 50mg/kg and 100mg/kg pure AzaA and with NeemAzal® (Trifolio-M GmbH) at the corresponding AzaA concentrations. The effect magnitude and duration of action of compounds was estimated by counting exflagellation centers, formed by microgametocytes in process of releasing flagellated gametes, at various time points after treatment in ex vivo exflagellation tests. Ookinete Development Assay: The direct effects of NeemAzal® and AzaA on ookinete development were measured by fluorescence microscopy after incubation of gametocytemic blood with various concentrations of test substances in microplates for 24h. RESULTS: The exflagellation tests revealed an half-life of NA anti-plasmodial compounds of up to 7h at a NA dose corresponding to 100mg/kg equivalent dose of AzaA. The ookinete development assay showed an increased activity of NA against early sporogonic stages compared to that of AzaA. The IC50 value determined for NA was 6.8µg/ml (CI95: 5.95-7.86), about half of the AzaA IC50 (12.4µg/ml; CI95: 11.0-14.04). CONCLUSION: The stronger activity of NA, when compared to AzaA, could not be explained by an additive or synergistic effect by other azadirachtins (B, D and I) present in NA. In fact, the addition of these compounds at 50µM concentration to AzaA did not evidence any decrease of the IC50 against early sporogonic stages to that obtained with AzaA alone. It is likely that other non-limonoid compounds present in NA may contribute to AzaA activity and enhanced pharmacodynamics against exflagellation both in vitro and in vivo.


Asunto(s)
Antiprotozoarios/farmacología , Azadirachta/química , Limoninas/farmacología , Malaria/parasitología , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Animales , Anopheles , Línea Celular , Femenino , Humanos , Malaria/transmisión , Ratones Endogámicos BALB C , Semillas/química
6.
Fitoterapia ; 114: 122-126, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27642038

RESUMEN

Azadirachta indica, known as neem tree and traditionally called "nature's drug store" makes part of several African pharmacopeias and is widely used for the preparation of homemade remedies and commercial preparations against various illnesses, including malaria. Employing a bio-guided fractionation approach, molecules obtained from A. indica ripe and green fruit kernels were tested for activity against early sporogonic stages of Plasmodium berghei, the parasite stages that develop in the mosquito mid gut after an infective blood meal. The limonoid deacetylnimbin (3) was identified as one the most active compounds of the extract, with a considerably higher activity compared to that of the close analogue nimbin (2). Pure deacetylnimbin (3) appeared to interfere with transmissible Plasmodium stages at a similar potency as azadirachtin A. Considering its higher thermal and chemical stability, deacetylnimbin could represent a suitable alternative to azadirachtin A for the preparation of transmission blocking antimalarials.


Asunto(s)
Antimaláricos/farmacología , Azadirachta/química , Limoninas/farmacología , Plasmodium berghei/efectos de los fármacos , Semillas/química , Animales , Antimaláricos/aislamiento & purificación , Femenino , Limoninas/aislamiento & purificación , Ratones Endogámicos BALB C , Estructura Molecular
7.
Parasit Vectors ; 9: 263, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-27146309

RESUMEN

BACKGROUND: Research efforts to identify possible alternative control tools for malaria and African trypanosomiasis are needed. One promising approach relies on the use of traditional plant remedies with insecticidal activities. METHODS: In this study, we assessed the effect of blood treated with different doses of NeemAzal ® (NA, neem seed extract) on mosquitoes (Anopheles coluzzii) and tsetse flies (Glossina palpalis gambiensis) (i) avidity to feed on the treated blood, (ii) longevity, and (iii) behavioural responses to human and calf odours in dual-choice tests. We also gauged NeemAzal ® toxicity in mice. RESULTS: In An. coluzzii, the ingestion of NA in bloodmeals offered by membrane feeding resulted in (i) primary antifeedancy; (ii) decreased longevity; and (iii) reduced response to host odours. In G. palpalis gambiensis, NA caused (i) a knock-down effect; (ii) decreased or increased longevity depending on the dose; and (iii) reduced response to host stimuli. In both cases, NA did not affect the anthropophilic rate of activated insects. Overall, the most significant effects were observed with NA treated bloodmeals at a dose of 2000 µg/ml for mosquitoes and 50 µg/ml for tsetse flies. Although no mortality in mice was observed after 14 days of follow-up at oral doses of 3.8, 5.6, 8.4 and 12.7 g/kg, behavioural alterations were noticed at doses above 8 g/kg. CONCLUSION: This study revealed promising activity of NA on A. coluzzii and G. palpalis gambiensis but additional research is needed to assess field efficacy of neem products to be possibly integrated in vector control programmes.


Asunto(s)
Anopheles/efectos de los fármacos , Azadirachta/química , Conducta Alimentaria/efectos de los fármacos , Extractos Vegetales/farmacología , Moscas Tse-Tse/efectos de los fármacos , Animales , Femenino , Insecticidas/química , Insecticidas/farmacología , Masculino , Ratones , Extractos Vegetales/efectos adversos , Extractos Vegetales/química
8.
Malar J ; 14: 288, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26208861

RESUMEN

BACKGROUND: Medicinal plants are a validated source for discovery of new leads and standardized herbal medicines. The aim of this study was to assess the activity of Vernonia amygdalina leaf extracts and isolated compounds against gametocytes and sporogonic stages of Plasmodium berghei and to validate the findings on field isolates of Plasmodium falciparum. METHODS: Aqueous (Ver-H2O) and ethanolic (Ver-EtOH) leaf extracts were tested in vivo for activity against sexual and asexual blood stage P. berghei parasites. In vivo transmission blocking effects of Ver-EtOH and Ver-H2O were estimated by assessing P. berghei oocyst prevalence and density in Anopheles stephensi mosquitoes. Activity targeting early sporogonic stages (ESS), namely gametes, zygotes and ookinetes was assessed in vitro using P. berghei CTRPp.GFP strain. Bioassay guided fractionation was performed to characterize V. amygdalina fractions and molecules for anti-ESS activity. Fractions active against ESS of the murine parasite were tested for ex vivo transmission blocking activity on P. falciparum field isolates. Cytotoxic effects of extracts and isolated compounds vernolide and vernodalol were evaluated on the human cell lines HCT116 and EA.hy926. RESULTS: Ver-H2O reduced the P. berghei macrogametocyte density in mice by about 50% and Ver-EtOH reduced P. berghei oocyst prevalence and density by 27 and 90%, respectively, in An. stephensi mosquitoes. Ver-EtOH inhibited almost completely (>90%) ESS development in vitro at 50 µg/mL. At this concentration, four fractions obtained from the ethylacetate phase of the methanol extract displayed inhibitory activity >90% against ESS. Three tested fractions were also found active against field isolates of the human parasite P. falciparum, reducing oocyst prevalence in Anopheles coluzzii mosquitoes to one-half and oocyst density to one-fourth of controls. The molecules and fractions displayed considerable cytotoxicity on the two tested cell-lines. CONCLUSIONS: Vernonia amygdalina leaves contain molecules affecting multiple stages of Plasmodium, evidencing its potential for drug discovery. Chemical modification of the identified hit molecules, in particular vernodalol, could generate a library of druggable sesquiterpene lactones. The development of a multistage phytomedicine designed as preventive treatment to complement existing malaria control tools appears a challenging but feasible goal.


Asunto(s)
Antimaláricos/farmacología , Malaria/transmisión , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Vernonia/química , Animales , Anopheles/parasitología , Antimaláricos/uso terapéutico , Antimaláricos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria/prevención & control , Masculino , Ratones , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad
9.
Parasit Vectors ; 8: 94, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25884799

RESUMEN

BACKGROUND: Herbal remedies are widely used in many malaria endemic countries to treat patients, in particular in the absence of anti-malarial drugs and in some settings to prevent the disease. Herbal medicines may be specifically designed for prophylaxis and/or for blocking malaria transmission to benefit both, the individual consumer and the community at large. Neem represents a good candidate for this purpose due to its inhibitory effects on the parasite stages that cause the clinical manifestations of malaria and on those responsible for infection in the vector. Furthermore, neem secondary metabolites have been shown to interfere with various physiological processes in insect vectors. This study was undertaken to assess the impact of the standardised neem extract NeemAzal on the fitness of the malaria vector Anopheles stephensi following repeated exposure to the product through consecutive blood meals on treated mice. METHODS: Batches of An. stephensi mosquitoes were offered 5 consecutive blood meals on female BALB/c mice treated with NeemAzal at an azadirachtin A concentration of 60, 105 or 150 mg/kg. The blood feeding capacity was estimated by measuring the haematin content of the rectal fluid excreted by the mosquitoes during feeding. The number of eggs laid was estimated by image analysis and their hatchability assessed by direct observations. RESULTS: A dose and frequency dependent impact of NeemAzal treatment on the mosquito feeding capacity, oviposition and egg hatchability was demonstrated. In the 150 mg/kg treatment group, the mosquito feeding capacity was reduced by 50% already at the second blood meal and by 50 to 80% in all treatment groups at the fifth blood meal. Consequently, a 50 - 65% reduction in the number of eggs laid per female mosquito was observed after the fifth blood meal in all treatment groups. Similarly, after the fifth treated blood meal exposure, hatchability was found to be reduced by 62% and 70% in the 105 and 150 mg/kg group respectively. CONCLUSIONS: The findings of this study, taken together with the accumulated knowledge on neem open the challenging prospects of designing neem-based formulations as multi-target phytomedicines exhibiting preventive, parasite transmission-blocking as well as anti-vectorial properties.


Asunto(s)
Anopheles/fisiología , Antimaláricos/farmacología , Azadirachta/química , Insectos Vectores/fisiología , Limoninas/farmacología , Malaria/transmisión , Animales , Anopheles/efectos de los fármacos , Sangre , Femenino , Humanos , Insectos Vectores/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Oviposición , Extractos Vegetales/farmacología
10.
Parasit Vectors ; 7: 185, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24735564

RESUMEN

BACKGROUND: Targeting the stages of the malaria parasites responsible for transmission from the human host to the mosquito vector is a key pharmacological strategy for malaria control. Research efforts to identify compounds that are active against these stages have significantly increased in recent years. However, at present, only two drugs are available, namely primaquine and artesunate, which reportedly act on late stage gametocytes. METHODS: In this study, we assessed the antiplasmodial effects of 5 extracts obtained from the neem tree Azadirachta indica and Guiera senegalensis against the early vector stages of Plasmodium falciparum, using field isolates. In an ex vivo assay gametocytaemic blood was supplemented with the plant extracts and offered to Anopheles coluzzii females by membrane feeding. Transmission blocking activity was evaluated by assessing oocyst prevalence and density on the mosquito midguts. RESULTS: Initial screening of the 5 plant extracts at 250 ppm revealed transmission blocking activity in two neem preparations. Up to a concentration of 70 ppm the commercial extract NeemAzal completely blocked transmission and at 60 ppm mosquitoes of 4 out of 5 replicate groups remained uninfected. Mosquitoes fed on the ethyl acetate phase of neem leaves at 250 ppm showed a reduction in oocyst prevalence of 59.0% (CI95 12.0 - 79.0; p < 10-4) and in oocyst density of 90.5% (CI95 86.0 - 93.5; p < 10-4 ), while the ethanol extract from the same plant part did not exhibit any activity. No evidence of transmission blocking activity was found using G. senegalensis ethyl acetate extract from stem galls. CONCLUSIONS: The results of this study highlight the potential of antimalarial plants for the discovery of novel transmission blocking molecules, and open up the potential of developing standardized transmission blocking herbal formulations as malaria control tools to complement currently used antimalarial drugs and combination treatments.


Asunto(s)
Anopheles/parasitología , Azadirachta/química , Combretaceae/química , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Preescolar , Femenino , Humanos , Extractos Vegetales/química
11.
J Ethnopharmacol ; 140(2): 255-60, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22301449

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Saye, a combination remedy prepared from Cochlospermum planchonii Hook.f. (Cochlospermaceae), Cassia alata L. (Fabaceae) and Phyllanthus amarus Schumach. et Thonn. (Euphorbiaceae), N'Dribala, a Cochlospermum planchonii root decoction, and a fruit preparation of Azadirachta indica A. Juss. (Meliaceae) are plant remedies of the folk medicine in Burkina Faso and are commonly used by traditional healers for the treatment of malaria. AIM OF THE STUDY: This study aimed at validating the antiplasmodial activity of the preparations and at estimating their potential for prophylaxis, using the murine malaria system Plasmodium berghei/Anopheles stephensi. MATERIALS AND METHODS: Aqueous extracts were orally administered to mice (6 animals per treatment group) at a daily dose of 200mg/kg body weight for nine days, applying protocols that mimic as much as possible traditional recipes and treatment schemes. RESULTS: Saye, N'Dribala and Azadirachta indica preparations revealed prophylactic activity, reducing parasitaemia in treated mice, with respect to controls, by 52.0% (CI(95) 46.1-57.9), 45.5% (CI(95) 44.5-46.5) and 45.0% (CI(95) 41.1-48.9), respectively. No evidence of transmission blocking effects was detected with any of the tested remedies. CONCLUSIONS: This study confirms, in the murine malaria system, the antiplasmodial properties of the examined remedies on the Plasmodium stages developing in the vertebrate host, thus encouraging studies aiming at identifying the active fractions and compounds responsible for the described activity and to develop standardized prophylactic remedies.


Asunto(s)
Antimaláricos/uso terapéutico , Magnoliopsida , Malaria/prevención & control , Parasitemia/prevención & control , Fitoterapia , Extractos Vegetales/uso terapéutico , Plasmodium berghei/efectos de los fármacos , Animales , Anopheles/efectos de los fármacos , Antimaláricos/farmacología , Azadirachta , Bixaceae , Burkina Faso , Cassia , Malaria/microbiología , Medicinas Tradicionales Africanas , Ratones , Ratones Endogámicos BALB C , Parasitemia/microbiología , Phyllanthus , Extractos Vegetales/farmacología
12.
J Ethnopharmacol ; 137(1): 743-51, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21742022

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The decoction of the combined stem barks of Khaya ivorensis A. Chev. (Meliaceae) and Alstonia boonei De Wild (Apocynaceae) has a history of use in traditional medicine of central Cameroon for malaria treatment but also for the prevention of the disease. AIM OF THE STUDY: The purpose of this investigation was to determine the antiplasmodial activity of Khaya ivorensis (K) and Alstonia boonei (A) preparations in the murine malaria model Plasmodium berghei/Anopheles stephensi, to estimate their prophylactic potential and to assess acute and sub-acute toxicity of the formulations prepared according to the traditional recipes. MATERIALS AND METHODS: Aqueous extracts from the stem-bark of the two plants were prepared and tested separately and in combination. BALB/c mice were treated for 9 days and challenged on day 3 by exposure to mosquitoes infected with Plasmodium berghei. Treatment doses ranged between 200 and 400mg/kg/day, corresponding approximately to the dosage applied by traditional healers to cure malaria patients or prevent the disease. Parasitemia reduction in treated animals was calculated from Giemsa smear counts, of two replicate experiments. To estimate acute toxicity in terms of median lethal dose (LD50), geometrically increasing doses were administered to mice. Sub-acute toxicity of the herbal combination (KA) was investigated by administering the same doses as in the antiplasmodial activity test for a period of 14 days, followed by 14 days of recovery observation. Locomotor activity (Open Field Test), body weight, liver and kidney morphology were monitored. RESULTS: The combination KA was found to exhibit antiplasmodial activity in the murine malaria model. In mice treated with the combination remedy at a dosage of 200mg/kg/day, parasitemia values of 6.2% ± 1.7 and 6.5% ± 0.8 were recorded, compared to 10.8% ± 1.3 and 12.0% ± 4.0 in controls (p<0.01). Doubling the dosage of the extracts did not significantly increase parasite suppression. When extracts of K and A were administered separately at a dosage of 400mg/kg, a reduction in parasitemia was still obtained, but it did not reach statistical significance. Toxicity studies yielded comforting results: the LD50 was estimated to be greater than 2779.5mg/kg. Moreover, mice exposed to the fourteen-day repeated-dose toxicity test (sub-acute toxicity test) did not display weight loss, liver or kidney morphological modifications, significant alterations in locomotor activity or any other sign of illness. CONCLUSION: The antiplasmodial activity and the wide dose interval between the therapeutic dosage and the toxic dosage exhibited by the KA herbal combination in the murine malaria model argue in favor of its use as an antimalarial prophylactic remedy. It remains to be demonstrated by human clinical trials whether the combination remedy, when taken by inhabitants during malaria transmission season, can reduce parasite density and lead to a reduction of malaria episodes in the community.


Asunto(s)
Alstonia , Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Meliaceae , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Alstonia/química , Animales , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/toxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Femenino , Dosificación Letal Mediana , Malaria/parasitología , Masculino , Medicina Tradicional , Meliaceae/química , Ratones , Ratones Endogámicos BALB C , Recuento de Huevos de Parásitos , Corteza de la Planta , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Plantas Medicinales , Plasmodium berghei/patogenicidad , Pruebas de Toxicidad
13.
J Nat Prod ; 73(8): 1448-52, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20669933

RESUMEN

Eight known and two new triterpenoid derivatives, neemfruitins A (9) and B (10), have been isolated from the fruits of neem, Azadirachta indica, a traditional antimalarial plant used by Asian and African populations. In vitro antiplasmodial tests evidenced a significant activity of the known gedunin and azadirone and the new neemfruitin A and provided useful information about the structure-antimalarial activity relationships in the limonoid class.


Asunto(s)
Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Azadirachta/química , Plantas Medicinales/química , Triterpenos/aislamiento & purificación , Triterpenos/farmacología , Antimaláricos/química , Burkina Faso , Frutas/química , Limoninas/química , Limoninas/farmacología , Relación Estructura-Actividad , Triterpenos/química
14.
Malar J ; 9: 66, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20196858

RESUMEN

BACKGROUND: The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (Azadirachta indica, Meliaceae) seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal(R), an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. METHODS: Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal(R) on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. RESULTS: NeemAzal completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule organizing centres and with the assembly of cytoskeletal microtubules, which are both fundamental processes in Plasmodium gametogenesis and ookinete formation. CONCLUSIONS: This work demonstrated in vivo transmission blocking activity of an azadirachtin-enriched neem seed extract at an azadirachtin dose compatible with 'druggability' requisites. These results and evidence of anti-plasmodial activity of neem products accumulated over the last years encourage to convey neem compounds into the drug discovery & development pipeline and to evaluate their potential for the design of novel or improved transmission-blocking remedies.


Asunto(s)
Limoninas/farmacología , Oocistos/efectos de los fármacos , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Animales , Anopheles/genética , Anopheles/inmunología , Anopheles/parasitología , Azadirachta/química , Femenino , Insectos Vectores/genética , Insectos Vectores/inmunología , Insectos Vectores/parasitología , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Oocistos/ultraestructura , Oviposición/efectos de los fármacos , Plasmodium berghei/crecimiento & desarrollo , Semillas
15.
J Ethnopharmacol ; 125(2): 279-85, 2009 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19577622

RESUMEN

AIM OF THE STUDY: Sun-dried rind of the immature fruit of Punica granatum L. (Punicaceae) (Pg) is presently used as a herbal formulation (OMARIA) in Orissa, India, for the therapy and prophylaxis of malaria. The aims of this study were (i) to assess in vitro the antiplasmodial activity of the methanolic extract, of a tannin enriched fraction and of compounds/metabolites of the antimalarial plant, (ii) to estimate the curative efficacy of the Pg extracts and (iii) to explore the mechanism of action of the antiplasmodial compounds. Urolithins, the ellagitannin metabolites, were also investigated for antiplasmodial activity. MATERIALS AND METHODS: Chloroquine-susceptible (D10) and -resistant (W2) strains of Pf were used for in vitro studies and the rodent malaria model Plasmodium berghei-BALB/c mice was used for in vivo assessments. Recombinant plasmepsins 2 and 4 were used to investigate the interference of Pg compounds with the metabolism of haemoglobin by malaria parasites. RESULTS: The Pg methanolic extract (Pg-MeOH) inhibited parasite growth in vitro with a IC(50) of 4.5 and 2.8 microg/ml, for D10 and W2 strain, respectively. The activity was found to be associated to the fraction enriched with tannins (Pg-FET, IC(50) 2.9 and 1.5 microg/ml) in which punicalagins (29.1%), punicalins, ellagic acid (13.4%) and its glycoside could be identified. Plasmepsin 2 was inhibited by Pg-MeOH extract and by Pg-FET (IC(50) 7.3 and 3.0 microg/ml), which could partly explain the antiparasitic effect. On the contrary, urolithins were inactive. Both Pg-MeOH extract and Pg-FET did not show any in vivo efficacy in the murine model. CONCLUSIONS: The in vitro studies support the use of Pg as antimalarial remedy. Possible explanations for the negative in vivo results are discussed.


Asunto(s)
Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Elágico/farmacología , Taninos Hidrolizables/farmacología , Lythraceae/química , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antimaláricos/uso terapéutico , Modelos Animales de Enfermedad , Ácido Elágico/uso terapéutico , Frutas , Hemoglobinas/metabolismo , Taninos Hidrolizables/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos
16.
Vet Parasitol ; 144(3-4): 328-37, 2007 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-17161539

RESUMEN

Secondary metabolites present in the neem tree (Azadirachta indica A. Juss, Meliaceae), exhibit a wide range of biological activities in insects. However, few studies have been undertaken to assess the potential of neem products as insecticides for the control of ectoparasites of domestic animals. This study was undertaken to estimate the efficacy of Neem Azal, an azadirachtin-rich extract of neem seeds, in controlling Damalinia limbata (Phthiraptera) louse infestation of angora goats. The study was conducted on a fibre animal farm situated in Central Italy. Groups of 11-12 goats were treated with Neem Azal at an azadirachtin concentration of 650ppm or 125ppm, with Neguvon or were left untreated. Their louse burden was assessed fortnightly to monthly for 22 weeks. A reduction in louse densities of 76-96% was observed from week 2 to week 18 after treatment with the neem solution containing azadirachtin at a concentration of 650ppm. At the lower test concentration (125ppm) a reduction of 60-92% could be recorded from week 2 to week 14. Neem Azal was found to reduce the survival of both adult and nymph stages of D. limbata and to interfere with oviposition and oogenesis of female lice. A decrease in oviposition was observed in neem exposed female lice and the examination of their ovaries revealed morphological alterations in both vitellogenic and previtellogenic ovarioles at the follicular and germinal level. Since neem compounds target different life stages and physiological processes of D. limbata, the development of insecticide resistance by biting lice exposed to neem-based insecticides appears unlikely. For this reason and for its prolonged activity, which in principle allows angora goats to be protected for a large part of the mohair production cycle, neem-based insecticides may have a potential interest for mohair producing breeders.


Asunto(s)
Glicéridos/uso terapéutico , Enfermedades de las Cabras/tratamiento farmacológico , Insecticidas/uso terapéutico , Infestaciones por Piojos/veterinaria , Phthiraptera/efectos de los fármacos , Terpenos/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Femenino , Enfermedades de las Cabras/parasitología , Cabras , Infestaciones por Piojos/tratamiento farmacológico , Masculino , Ninfa/efectos de los fármacos , Ovario/efectos de los fármacos , Reproducción/efectos de los fármacos , Triclorfón/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA