Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ann N Y Acad Sci ; 1471(1): 18-56, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-30875083

RESUMEN

Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.


Asunto(s)
Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Medicina de Precisión , Diferenciación Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/patología , Descubrimiento de Drogas , Humanos , Neuronas/efectos de los fármacos
2.
Mol Cell Neurosci ; 99: 103386, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31202891

RESUMEN

A subset of individuals with major depressive disorder (MDD) elects treatment with complementary and alternative medicines (CAMs), including the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Previous studies in rodents suggest that DHA modulates neurodevelopmental processes, including adult neurogenesis and neuroplasticity, but the molecular and cellular mechanisms of DHA's potential therapeutic effect in the context of human neurobiology have not been well established. Here we sought to address this knowledge gap by investigating the effects of DHA using human iPSC-derived neural progenitor cells (NPCs) and post-mitotic neurons using pathway-selective reporter genes, multiplexed mRNA expression profiling, and a panel of metabolism-based viability assays. Finally, real-time, live-cell imaging was employed to monitor neurite outgrowth upon DHA treatment. Overall, these studies showed that DHA treatment (0-50 µM) significantly upregulated both WNT and CREB signaling pathways in human neuronal cells in a dose-dependent manner with 2- to 3-fold increases in pathway activation. Additionally, we observed that DHA treatment enhanced survival of iPSC-derived NPCs and differentiation of post-mitotic neurons with live-cell imaging, revealing increased neurite outgrowth with DHA treatment within 24 h. Taken together, this study provides evidence that DHA treatment activates critical pathways regulating neuroplasticity, which may contribute to enhanced neuronal cell viability and neuronal connectivity. The extent to which these pathways represent molecular mechanisms underlying the potential beneficial effects of omega-3 fatty acids in MDD and other brain disorders merits further investigation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ácidos Docosahexaenoicos/farmacología , Células-Madre Neurales/metabolismo , Vía de Señalización Wnt , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Proyección Neuronal
3.
Nat Commun ; 9(1): 5142, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510233

RESUMEN

Technologies for mapping the spatial and temporal patterns of neural activity have advanced our understanding of brain function in both health and disease. An important application of these technologies is the discovery of next-generation neurotherapeutics for neurological and psychiatric disorders. Here, we describe an in vivo drug screening strategy that combines high-throughput technology to generate large-scale brain activity maps (BAMs) with machine learning for predictive analysis. This platform enables evaluation of compounds' mechanisms of action and potential therapeutic uses based on information-rich BAMs derived from drug-treated zebrafish larvae. From a screen of clinically used drugs, we found intrinsically coherent drug clusters that are associated with known therapeutic categories. Using BAM-based clusters as a functional classifier, we identify anti-seizure-like drug leads from non-clinical compounds and validate their therapeutic effects in the pentylenetetrazole zebrafish seizure model. Collectively, this study provides a framework to advance the field of systems neuropharmacology.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/efectos de los fármacos , Aprendizaje Automático , Neurofarmacología/métodos , Animales , Animales Modificados Genéticamente , Encéfalo/patología , Encéfalo/fisiopatología , Convulsivantes/química , Convulsivantes/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Larva/efectos de los fármacos , Larva/fisiología , Estructura Molecular , Pentilenotetrazol/química , Pentilenotetrazol/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Pez Cebra
4.
J Biol Chem ; 290(23): 14361-80, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25878248

RESUMEN

Abnormal accumulation of undigested macromolecules, often disease-specific, is a major feature of lysosomal and neurodegenerative disease and is frequently attributed to defective autophagy. The mechanistic underpinnings of the autophagy defects are the subject of intense research, which is aided by genetic disease models. To gain an improved understanding of the pathways regulating defective autophagy specifically in juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), a neurodegenerative disease of childhood, we developed and piloted a GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) screening assay to identify, in an unbiased fashion, genotype-sensitive small molecule autophagy modifiers, employing a JNCL neuronal cell model bearing the most common disease mutation in CLN3. Thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) Ca(2+) pump inhibitor, reproducibly displayed significantly more activity in the mouse JNCL cells, an effect that was also observed in human-induced pluripotent stem cell-derived JNCL neural progenitor cells. The mechanism of thapsigargin sensitivity was Ca(2+)-mediated, and autophagosome accumulation in JNCL cells could be reversed by Ca(2+) chelation. Interrogation of intracellular Ca(2+) handling highlighted alterations in endoplasmic reticulum, mitochondrial, and lysosomal Ca(2+) pools and in store-operated Ca(2+) uptake in JNCL cells. These results further support an important role for the CLN3 protein in intracellular Ca(2+) handling and in autophagic pathway flux and establish a powerful new platform for therapeutic screening.


Asunto(s)
Calcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Células-Madre Neurales/patología , Lipofuscinosis Ceroideas Neuronales/patología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Mutación , Células-Madre Neurales/metabolismo , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Biol Psychiatry ; 75(12): 952-60, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23876186

RESUMEN

The advent of somatic cell reprogramming technologies-which enables the generation of patient-specific, induced pluripotent stem cell and other trans-differentiated human neuronal cell models-provides new means of gaining insight into the molecular mechanisms and neural substrates of psychiatric disorders. By allowing a more precise understanding of genotype-phenotype relationship in disease-relevant human cell types, the use of reprogramming technologies in tandem with emerging genome engineering approaches provides a previously "missing link" between basic research and translational efforts. In this review, we summarize advances in applying human pluripotent stem cell and reprogramming technologies to generate specific neural subtypes with a focus on the use of these in vitro systems for the discovery of small molecule-probes and novel therapeutics. Examples are given where human cell models of psychiatric disorders have begun to reveal new mechanistic insight into pathophysiology and simultaneously have provided the foundation for developing disease-relevant, phenotypic assays suitable for both functional genomic and chemical screens. A number of areas for future research are discussed, including the need to develop robust methodology for the reproducible, large-scale production of disease-relevant neural cell types in formats compatible with high-throughput screening modalities, including high-content imaging, multidimensional, signature-based screening, and in vitro network with multielectrode arrays. Limitations, including the challenges in recapitulating neurocircuits and non-cell autonomous phenotypes are discussed. Although these technologies are still in active development, we conclude that, as our understanding of how to efficiently generate and probe the plasticity of patient-specific stem models improves, their utility is likely to advance rapidly.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/patología , Modelos Neurológicos , Evaluación Preclínica de Medicamentos/tendencias , Humanos , Trastornos Mentales/fisiopatología
6.
Hum Mol Genet ; 20(12): 2344-55, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21447599

RESUMEN

The expanded CAG repeat that causes striatal cell vulnerability in Huntington's disease (HD) encodes a polyglutamine tract in full-length huntingtin that is correlated with cellular [ATP] and [ATP/ADP]. Since striatal neurons are vulnerable to energy deficit, we have investigated, in Hdh CAG knock-in mice and striatal cells, the hypothesis that decreased energetics may affect neuronal (N)-cadherin, a candidate energy-sensitive adhesion protein that may contribute to HD striatal cell sensitivity. In vivo, N-cadherin was sensitive to ischemia and to the effects of full-length mutant huntingtin, progressively decreasing in Hdh(Q111) striatum with age. In cultured striatal cells, N-cadherin was decreased by ATP depletion and STHdh(Q111) striatal cells exhibited dramatically decreased N-cadherin, due to decreased Cdh2 mRNA and enhanced N-cadherin turnover, which was partially normalized by adenine supplementation to increase [ATP] and [ATP/ADP]. Consistent with decreased N-cadherin function, STHdh(Q111) striatal cells displayed profound deficits in calcium-dependent N-cadherin-mediated cell clustering and cell-substratum adhesion, and primary Hdh(Q111) striatal neuronal cells exhibited decreased N-cadherin and an abundance of immature neurites, featuring diffuse, rather than clustered, staining for N-cadherin and synaptic vesicle markers, which was partially rescued by adenine treatment. Thus, mutant full-length huntingtin, via energetic deficit, contributes to decreased N-cadherin levels in striatal neurons, with detrimental effects on neurite maturation, strongly suggesting that N-cadherin-mediated signaling merits investigation early in the HD pathogenic disease process.


Asunto(s)
Cadherinas/metabolismo , Cuerpo Estriado/citología , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/fisiología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Adenina , Adenosina Trifosfato/metabolismo , Animales , Adhesión Celular/fisiología , Células Cultivadas , Cuerpo Estriado/metabolismo , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Técnicas de Sustitución del Gen , Humanos , Proteína Huntingtina , Immunoblotting , Inmunohistoquímica , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Am Chem Soc ; 132(47): 16962-76, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21067169

RESUMEN

An aldol-based build/couple/pair (B/C/P) strategy was applied to generate a collection of stereochemically and skeletally diverse small molecules. In the build phase, a series of asymmetric syn- and anti-aldol reactions were performed to produce four stereoisomers of a Boc-protected γ-amino acid. In addition, both stereoisomers of O-PMB-protected alaninol were generated to provide a chiral amine coupling partner. In the couple step, eight stereoisomeric amides were synthesized by coupling the chiral acid and amine building blocks. The amides were subsequently reduced to generate the corresponding secondary amines. In the pair phase, three different reactions were employed to enable intramolecular ring-forming processes: nucleophilic aromatic substitution (S(N)Ar), Huisgen [3+2] cycloaddition, and ring-closing metathesis (RCM). Despite some stereochemical dependencies, the ring-forming reactions were optimized to proceed with good to excellent yields, providing a variety of skeletons ranging in size from 8- to 14-membered rings. Scaffolds resulting from the RCM pairing reaction were diversified on the solid phase to yield a 14 400-membered library of macrolactams. Screening of this library led to the discovery of a novel class of histone deacetylase inhibitors, which display mixed enzyme inhibition, and led to increased levels of acetylation in a primary mouse neuron culture. The development of stereo-structure/activity relationships was made possible by screening all 16 stereoisomers of the macrolactams produced through the aldol-based B/C/P strategy.


Asunto(s)
Aldehídos/química , Descubrimiento de Drogas/métodos , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/farmacología , Animales , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/farmacología , Evaluación Preclínica de Medicamentos , Inhibidores de Histona Desacetilasas/química , Compuestos Macrocíclicos/química , Ratones , Modelos Moleculares , Conformación Molecular , Estereoisomerismo , Especificidad por Sustrato
8.
Proc Natl Acad Sci U S A ; 107(43): 18342-7, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20937901

RESUMEN

Discovery of molecular mechanisms and chemical compounds that enhance neuronal regeneration can lead to development of therapeutics to combat nervous system injuries and neurodegenerative diseases. By combining high-throughput microfluidics and femtosecond laser microsurgery, we demonstrate for the first time large-scale in vivo screens for identification of compounds that affect neurite regeneration. We performed thousands of microsurgeries at single-axon precision in the nematode Caenorhabditis elegans at a rate of 20 seconds per animal. Following surgeries, we exposed the animals to a hand-curated library of approximately one hundred small molecules and identified chemicals that significantly alter neurite regeneration. In particular, we found that the PKC kinase inhibitor staurosporine strongly modulates regeneration in a concentration- and neuronal type-specific manner. Two structurally unrelated PKC inhibitors produce similar effects. We further show that regeneration is significantly enhanced by the PKC activator prostratin.


Asunto(s)
Regeneración Nerviosa/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/fisiología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Evaluación Preclínica de Medicamentos , Terapia por Láser/métodos , Microfluídica/métodos , Microcirugia/métodos , Procedimientos Neuroquirúrgicos/métodos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Estaurosporina/farmacología , Factores de Tiempo
9.
Science ; 313(5795): 1929-35, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-17008526

RESUMEN

To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this "Connectivity Map" resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project.


Asunto(s)
Bases de Datos Factuales , Evaluación Preclínica de Medicamentos/métodos , Perfilación de la Expresión Génica , Expresión Génica/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Línea Celular , Línea Celular Tumoral , Dexametasona/farmacología , Dexametasona/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Estrógenos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas , Humanos , Limoninas/farmacología , Obesidad/genética , Obesidad/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotiazinas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Sirolimus/farmacología , Sirolimus/uso terapéutico , Programas Informáticos
10.
Proc Natl Acad Sci U S A ; 100(8): 4389-94, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12677000

RESUMEN

Protein acetylation, especially histone acetylation, is the subject of both research and clinical investigation. At least four small-molecule histone deacetylase inhibitors are currently in clinical trials for the treatment of cancer. These and other inhibitors also affect microtubule acetylation. A multidimensional, chemical genetic screen of 7,392 small molecules was used to discover "tubacin," which inhibits alpha-tubulin deacetylation in mammalian cells. Tubacin does not affect the level of histone acetylation, gene-expression patterns, or cell-cycle progression. We provide evidence that class II histone deacetylase 6 (HDAC6) is the intracellular target of tubacin. Only one of the two catalytic domains of HDAC6 possesses tubulin deacetylase activity, and only this domain is bound by tubacin. Tubacin treatment did not affect the stability of microtubules but did decrease cell motility. HDAC6 overexpression disrupted the localization of p58, a protein that mediates binding of Golgi elements to microtubules. Our results highlight the role of alpha-tubulin acetylation in mediating the localization of microtubule-associated proteins. They also suggest that small molecules that selectively inhibit HDAC6-mediated alpha-tubulin deacetylation, a first example of which is tubacin, might have therapeutic applications as antimetastatic and antiangiogenic agents.


Asunto(s)
Anilidas/farmacología , Dioxanos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/farmacología , Tubulina (Proteína)/metabolismo , Células 3T3 , Acetilación , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Evaluación Preclínica de Medicamentos , Expresión Génica/efectos de los fármacos , Histona Desacetilasa 6 , Histona Desacetilasas/química , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Células Jurkat , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA