Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Transl Sci ; 14(2): 481-486, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33222389

RESUMEN

Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfortunately, prolonged MV results in the rapid development of inspiratory muscle weakness due to diaphragmatic atrophy and contractile dysfunction (termed ventilator-induced diaphragm dysfunction (VIDD)). Although VIDD is a major risk factor for problems in weaning patients from MV, a standard therapy to prevent VIDD does not exist. However, emerging evidence suggests that pharmacological blockade of angiotensin II type 1 receptors (AT1Rs) protects against VIDD. Nonetheless, the essential characteristics of AT1R blockers (ARBs) required to protect against VIDD remain unclear. To determine the traits of ARBs that are vital for protection against VIDD, we compared the efficacy of two clinically relevant ARBs, irbesartan and olmesartan; these ARBs differ in molecular structure and effects on AT1Rs. Specifically, olmesartan blocks both angiotensin II (AngII) binding and mechanical activation of AT1Rs, whereas irbesartan prevents only AngII binding to AT1Rs. Using a well-established preclinical model of prolonged MV, we tested the hypothesis that compared with irbesartan, olmesartan provides greater protection against VIDD. Our results reveal that irbesartan does not protect against VIDD whereas olmesartan defends against both MV-induced diaphragmatic atrophy and contractile dysfunction. These findings support the hypothesis that olmesartan is superior to irbesartan in protecting against VIDD and are consistent with the concept that blockade of mechanical activation of AT1Rs is a required property of ARBs to shield against VIDD. These important findings provide a foundation for future clinical trials to evaluate ARBs as a therapy to protect against VIDD.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Diafragma/patología , Respiración Artificial/efectos adversos , Animales , Atrofia/etiología , Atrofia/prevención & control , Diafragma/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Imidazoles/administración & dosificación , Irbesartán/administración & dosificación , Ratas , Respiración Artificial/instrumentación , Tetrazoles/administración & dosificación , Ventiladores Mecánicos/efectos adversos
2.
Integr Cancer Ther ; 18: 1534735419843999, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30999765

RESUMEN

INTRODUCTION: Doxorubicin (DOX) is a widely used chemotherapeutic agent with known cardiotoxic properties, while calorie restriction (CR) and exercise have well-documented cardioprotective effects. No studies have investigated the effects of CR alone or the combined effects of CR and exercise on DOX cardiotoxicity. METHODS: Rats were divided into 4 groups based on their food intake (ad libitum or CR) and activity (sedentary or voluntary wheel running [WR]). After completing a 16-week treatment, animals received either DOX (15 mg/kg) or saline (SAL) and cardiac function was measured 5 days after treatment. Chromatography was used to quantify left ventricular DOX accumulation. RESULTS: Left ventricular developed pressure (LVDP), end systolic pressure (ESP), and left ventricular maximal rate of pressure development (dP/dtmax) were significantly higher in the CR + DOX group when compared with DOX. Fractional shortening, LVDP, ESP, dP/dtmax, and dP/dtmin were significantly higher in the CR + WR + DOX group compared with the DOX group. In addition, the CR + WR + DOX group showed significantly higher LVDP and ESP compared with the WR + DOX group. DOX accumulation in the heart was 5-fold lower ( P < .05) in the CR + WR + DOX group compared with the DOX group. CONCLUSION: This is the first study to demonstrate that CR can reduce cardiac DOX accumulation, and confirms the protective role of CR against DOX-induced cardiac dysfunction. Our data also show that combining a known cardioprotective intervention, exercise training, with CR results in additive benefits in the protection against DOX cardiotoxicity.


Asunto(s)
Cardiotoxicidad/etiología , Cardiotoxicidad/fisiopatología , Doxorrubicina/efectos adversos , Condicionamiento Físico Animal/fisiología , Animales , Presión Sanguínea/fisiología , Restricción Calórica/métodos , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Ratas , Ratas Sprague-Dawley , Carrera/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA