RESUMEN
The pyrethroid toxicants, fatal at high doses, are found as remnants of crop pesticides and ingredients of commercially available insecticides. The toxic effects of high-content insecticidal pyrethroid formulations are available in 0.05 g, 1.17 g, and 0.04 g pyrethroid-instilled products, namely burning coils, pyrethroid-soaked mats, and liquid formulations of pyrethroids that release pyrethroid vapor/smoke upon heating. They provided 5.46 g/kg, 21.15 g/kg, and 4.24 g/kg of toxicants to the experimental animals over a total of 3 weeks/5 h per os (p.o.) administration, producing necrosis, hyperemia, and fatty changes in the liver; fiber separation in cardiac muscles; atrophy, lymphatic infiltration, blood vessel congestion, and hyperemia in the heart tissues of the experimental animals. The glomerular tuft necrosis, cytoplasmic degeneration of renal tubular cells, necrotic tubules, congestion, and dilatation of blood vessels were observed in the kidney tissue of intoxicated animals. Air-space enlargement, interstitial inflammation, lymphocyte infiltration aggregates, connective tissue infiltration by inflammatory cells, and hyperemia were found in the lung tissues. The pyrethroid toxicants also produced nervous tissue degeneration and decreased neurons in the brain, which were observed through histopathological examinations of the brain, lungs, heart, kidneys, and liver. The protective effects of ascorbic acid (AA/vitamin C) and α-tocopherol (E307/vitamin E) at 100 mg/kg oral doses administered daily for the entire period of the toxicant exposure of three weeks to the experimental mice, aged between 3-4 months and weighing ≈30 g, ameliorated the tissue damage, as observed through the histopathological examinations. The ascorbic acid caused recovery of the liver, kidney, brain, and heart tissue damage, while α-tocopherol was effective at ameliorating the damage in the kidneys and lung tissue compared with the control groups. The high levels of tissue damage recovery suggested a prophylactic effect of the concurrent use of ascorbic acid and α-tocopherol for the subjects under the exposure of pyrethroids.
Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Encéfalo/efectos de los fármacos , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Piretrinas/toxicidad , alfa-Tocoferol/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Suplementos Dietéticos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Ratones , Tamaño de los Órganos/efectos de los fármacosRESUMEN
The emergence of drug-resistant organisms have been increasing globally; therefore, it is a burning need to find an alternative drug to get rid of the diseases caused by resistant strains. This study aims to evaluate the antimicrobial and wound healing activities of Loranthus acacia, Cassia obtusifolia and Cymbopogon proximus plants. All the plants were collected and extracted - by maceration method. Antimicrobial activities determined using standard ATCC strain for Gram-positive bacteria (Bacillus subtilis, Bacillus crew, Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus) and Gram-negative bacteria (Shigella sonnnei, Salmonella Typhimurium, Salmonella typhi, Klebsiella pnuemoniae, Escherichia coli and Pseudomonas aeruginosa) following agar well diffusion method. Plants extracts were prepared as gel and investigated for in vivo wound healing activities in rats. Histological studies were performed on animals' skin. The results showed that all tested plants have various antimicrobial and wound healing activities. Out of these plants, L. acacia exhibited the best result; it revealed a significant result for antimicrobial activities counter to all Gram-positive, Gram-negative bacteria and wound healing activities in comparing with the reference drug. Thus, it is essential to consider L. acacia as a prospective source in progress in the synthesis of a new antimicrobial drug for the treatment of infectious diseases.