Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 21, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216871

RESUMEN

BACKGROUND: As antibiotics and chemotherapeutics are no longer as efficient as they once were, multidrug resistant (MDR) pathogens and cancer are presently considered as two of the most dangerous threats to human life. In this study, Selenium nanoparticles (SeNPs) biosynthesized by Streptomyces parvulus MAR4, nano-chitosan (NCh), and their nanoconjugate (Se/Ch-nanoconjugate) were suggested to be efficacious antimicrobial and anticancer agents. RESULTS: SeNPs biosynthesized by Streptomyces parvulus MAR4 and NCh were successfully achieved and conjugated. The biosynthesized SeNPs were spherical with a mean diameter of 94.2 nm and high stability. Yet, Se/Ch-nanoconjugate was semispherical with a 74.9 nm mean diameter and much higher stability. The SeNPs, NCh, and Se/Ch-nanoconjugate showed significant antimicrobial activity against various microbial pathogens with strong inhibitory effect on their tested metabolic key enzymes [phosphoglucose isomerase (PGI), pyruvate dehydrogenase (PDH), glucose-6-phosphate dehydrogenase (G6PDH) and nitrate reductase (NR)]; Se/Ch-nanoconjugate was the most powerful agent. Furthermore, SeNPs revealed strong cytotoxicity against HepG2 (IC50 = 13.04 µg/ml) and moderate toxicity against Caki-1 (HTB-46) tumor cell lines (IC50 = 21.35 µg/ml) but low cytotoxicity against WI-38 normal cell line (IC50 = 85.69 µg/ml). Nevertheless, Se/Ch-nanoconjugate displayed substantial cytotoxicity against HepG2 and Caki-1 (HTB-46) with IC50 values of 11.82 and 7.83 µg/ml, respectively. Consequently, Se/Ch-nanoconjugate may be more easily absorbed by both tumor cell lines. However, it exhibited very low cytotoxicity on WI-38 with IC50 of 153.3 µg/ml. Therefore, Se/Ch-nanoconjugate presented the most anticancer activity. CONCLUSION: The biosynthesized SeNPs and Se/Ch-nanoconjugate are convincingly recommended to be used in biomedical applications as versatile and potent antimicrobial and anticancer agents ensuring notable levels of biosafety, environmental compatibility, and efficacy.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Quitosano , Nanopartículas , Salicilatos , Selenio , Streptomyces , Humanos , Selenio/metabolismo , Selenio/toxicidad , Nanoconjugados , Quitosano/farmacología , Antiinfecciosos/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología
2.
BMC Biotechnol ; 24(1): 3, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233817

RESUMEN

The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophytic fungus Aspergillus sp. CO2 and Bacillus sp. COBZ21 as a method to stimulate the production of natural bioactive substances. (GC/MS)-based metabolomics profiling of two sponge-associated microbes, Aspergillus sp. CO2 and Bacillus sp. COBZ21, revealed that the co-culture of these two isolates induced the accumulation of metabolites that were not traced in their axenic cultures. By detection of different activities of extracts of Bacillus sp. COBZ21 and Aspergillus sp. CO2 and coculture between Bacillus sp. COBZ21 and Aspergillus sp. CO2. It was noted that the coculture strategy was the reason for a notable increase in some different activities, such as the antimicrobial activity, which showed potent activity against Escherichia coli ATCC 25,922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC 10,231. The antibiofilm activity showed significant biofilm inhibitory activity toward Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10,145, and Staph aureus NRRLB-767, with activity up to 53.66, 71.17, and 47.89%, while it showed low activity against E. coli ATCC 25,922, while the antioxidant activity based on the DPPH assay showed maximum activity (75.25%). GC-MS investigations revealed the presence of variable chemical constituents belonging to different chemical categories, which reflected their chemical diversity. The main components are (+-) cis-Deethylburnamine (2.66%), Bis(3,6,9,12-tetraoxapentaethylene) crowno-N,N,N',N'-tetra methylpphanediamine (2.48%), and 11-phenyl-2,4,6,8-tetra(2-thienyl)-11-aza-5,13-dithiaeteracyclo[7.3.0.1(2,8)0.0(3,7)] trideca-3,6-diene-10,12,13-trione (3.13%), respectively, for Bacillus sp. axenic culture, Aspergillus sp. CO2, Aspergillus sp. CO2, and Bacillus sp. COBZ21 coculture. By studying the ADME-related physicochemical properties of coculture extract, the compound showed log Po/w values above 5 (8.82). The solubility of the substance was moderate. In order to provide a comprehensive definition of medicinal chemistry and leadlikness, it is important to note that the latter did not meet the criteria outlined in the rule of three (RO3). The toxicity prediction of the coculture extract was performed using the ProTox II web server, which showed that the selected compound has no pronounced toxicity.


Asunto(s)
Antiinfecciosos , Bacillus , Humanos , Bacillus/metabolismo , Antioxidantes/farmacología , Dióxido de Carbono/metabolismo , Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/química , Aspergillus/metabolismo , Staphylococcus aureus , Extractos Vegetales/farmacología , Antibacterianos/farmacología
3.
Pharm Biol ; 60(1): 1899-1914, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36200747

RESUMEN

CONTEXT: Thais savignyi Deshayes (Muricidae) is widely distributed in the Red Sea. Its abundance and the history of Muricidae in traditional medicine make it a tempting target for investigation. OBJECTIVE: To investigate the chemical profile and biological activities of T. savignyi tissue extracts. MATERIALS AND METHODS: Methanol, ethanol, acetone, and ethyl acetate extracts from T. savignyi tissue were compared in their antioxidant by total antioxidant capacity, DPPH free radical scavenging, and total phenolic content. In addition, the antimicrobial, and antibiofilm properties (at 250 µg/mL) of the extracts were tested against Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans. The antioxidant extract with greatest activity was assessed for cytotoxicity (range 0.4-100 µg/mL) against 3 human cancer cell lines (UO-31, A549 and A431), and its chemical composition was investigated using GC-MS. Moreover, docking simulation was performed to predict its constituents' binding modes/scores to the active sites of thymidylate kinase. RESULTS: The ethyl acetate extract (Ts-EtOAc) showed the highest total antioxidant capacity (551.33 mg AAE/g dry weight), total phenolics (254.46 mg GAE/g dry weight), and DPPH scavenging (IC50= 24.0 µg/mL). Ts-EtOAc exhibited strong antibacterial (MIC: 3.9 µg/mL against K. pneumoniae), antibiofilm (MIC: 7.81 µg/mL against S. aureus), and antifungal (MIC: 3.9 µg/mL against C. albicans) activities and considerable cytotoxicity against cancer cells (UO-31: IC50= 19.96 ± 0.93, A549: IC50= 25.04 ± 1.15 µg/mL). GC-MS identified multiple bioactive metabolites in Ts-EtOAc extract belonging to miscellaneous chemical classes. Molecular docking studies revealed that the constituents of Ts-EtOAc have antibacterial potential. DISCUSSION AND CONCLUSIONS: T. savignyi extract has considerable antimicrobial and cytotoxic activities. Further studies are needed to isolate the active constituents of this snail for comprehensive drug discovery tests.


Asunto(s)
Antiinfecciosos , Antioxidantes , Acetatos , Acetona , Antibacterianos , Antiinfecciosos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Etanol , Radicales Libres , Humanos , Metanol , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Fenoles/farmacología , Extractos Vegetales , Staphylococcus aureus , Tailandia , Extractos de Tejidos
4.
Plants (Basel) ; 11(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35890504

RESUMEN

Origanum majoranum L. is a Lamiaceae medicinal plant with culinary and ethnomedical applications. Its biological and phytochemical profiles have been extensively researched. Accordingly, this study aimed to investigate the chemical composition and the antibacterial and antioxidant properties of O. majoranum high features, as well as to search for techniques for activity optimization. A metabolomics study of the crude extract of O. majoranum using liquid chromatography-high-resolution electrospray ionization mass spectrometry (LC ± HR ± ESI ± MS) was conducted. Five fractions (petroleum ether, dichloromethane, ethyl acetate, n-butanol, and aqueous) were derived from the total extract of the aerial parts. Different chromatographic methods and NMR analysis were utilized to purify and identify the isolated phenolics (high features). Moreover, the antimicrobial, antibiofilm, and antioxidant activity of phenolics were performed. Results showed that metabolomic profiling of the crude extract of O. majoranum aerial parts revealed the presence of a variety of phytochemicals, predominantly phenolics, resulting in the isolation and identification of seven high-feature compounds comprising two phenolic acids, rosmarinic and caffeic acids, one phenolic diterpene, 7-methoxyepirosmanol, in addition to four flavonoids, quercetin, hesperitin, hesperidin, and luteolin. On the other hand, 7-methoxyepirosmanol (OM1) displayed the most antimicrobial and antioxidant potential. Such a phenolic principal activity improvement seems to be established after loading on gold nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA