Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Gene Ther ; 28(5): 378-384, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28322590

RESUMEN

Despite improvements in drug and device therapy for heart failure, hospitalization rates and mortality have changed little in the past decade. Randomized clinical trials using gene transfer to improve function of the failing heart are the focus of this review. Four randomized clinical trials of gene transfer in heart failure with reduced ejection fraction (HFrEF) have been published. Each enrolled patients with stable symptomatic HFrEF and used either intracoronary delivery of a virus vector or endocardial injection of a plasmid. The initial CUPID trial randomized 14 subjects to placebo and 25 subjects to escalating doses of adeno-associated virus type 1 encoding sarcoplasmic reticulum calcium ATPase (AAV1.SERCA2a). AAV1.SERCA2a was well tolerated, and the high-dose group met a 6 month composite endpoint. In the subsequent CUPID-2 study, 243 subjects received either placebo or the high dose of AAV1.SERCA2a. AAV1.SERCA2a administration, while safe, failed to meet the primary or any secondary endpoints. STOP-HF used plasmid endocardial injection of stromal cell-derived factor-1 to promote stem-cell recruitment. In a 93-subject trial of patients with ischemic etiology heart failure, the primary endpoint (symptoms and 6 min walk distance) failed, but subgroup analyses showed improvements in subjects with the lowest ejection fractions. A fourth trial randomized 14 subjects to placebo and 42 subjects to escalating doses of adenovirus-5 encoding adenylyl cyclase 6 (Ad5.hAC6). There were no safety concerns, and patients in the two highest dose groups (combined) showed improvements in left ventricular function (left ventricular ejection fraction and -dP/dt). The safety data from four randomized clinical trials of gene transfer in patients with symptomatic HFrEF suggest that this approach can be conducted with acceptable risk, despite invasive delivery techniques in a high-risk population. Additional trials are necessary before the approach can be endorsed for clinical practice.


Asunto(s)
Técnicas de Transferencia de Gen/tendencias , Terapia Genética , Insuficiencia Cardíaca/terapia , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/uso terapéutico , Dependovirus , Femenino , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Parvovirinae/genética , Ensayos Clínicos Controlados Aleatorios como Asunto , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
2.
Am J Physiol Heart Circ Physiol ; 299(5): H1459-67, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20709863

RESUMEN

Adenylyl cyclase (AC) is the principal effector molecule in the ß-adrenergic receptor pathway. AC(V) and AC(VI) are the two predominant isoforms in mammalian cardiac myocytes. The disparate roles among AC isoforms in cardiac hypertrophy and progression to heart failure have been under intense investigation. Specifically, the salutary effects resulting from the disruption of AC(V) have been established in multiple models of cardiomyopathy. It has been proposed that a continual activation of AC(V) through elevated levels of protein kinase C could play an integral role in mediating a hypertrophic response leading to progressive heart failure. Elevated protein kinase C is a common finding in heart failure and was demonstrated in murine cardiomyopathy from cardiac-specific overexpression of G(αq) protein. Here we assessed whether the disruption of AC(V) expression can improve cardiac function, limit electrophysiological remodeling, or improve survival in the G(αq) mouse model of heart failure. We directly tested the effects of gene-targeted disruption of AC(V) in transgenic mice with cardiac-specific overexpression of G(αq) protein using multiple techniques to assess the survival, cardiac function, as well as structural and electrical remodeling. Surprisingly, in contrast to other models of cardiomyopathy, AC(V) disruption did not improve survival or cardiac function, limit cardiac chamber dilation, halt hypertrophy, or prevent electrical remodeling in G(αq) transgenic mice. In conclusion, unlike other established models of cardiomyopathy, disrupting AC(V) expression in the G(αq) mouse model is insufficient to overcome several parallel pathophysiological processes leading to progressive heart failure.


Asunto(s)
Adenilil Ciclasas/metabolismo , Cardiomiopatías/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Adenilil Ciclasas/genética , Animales , Bradicardia/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas Electrofisiológicas Cardíacas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Proteína Quinasa C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA