Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(51): 25909-25916, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776248

RESUMEN

Bees acquire carbohydrates from nectar and lipids; and amino acids from pollen, which also contains polysaccharides including cellulose, hemicellulose, and pectin. These potential energy sources could be degraded and fermented through microbial enzymatic activity, resulting in short chain fatty acids available to hosts. However, the contributions of individual microbiota members to polysaccharide digestion have remained unclear. Through analysis of bacterial isolate genomes and a metagenome of the honey bee gut microbiota, we identify that Bifidobacterium and Gilliamella are the principal degraders of hemicellulose and pectin. Both Bifidobacterium and Gilliamella show extensive strain-level diversity in gene repertoires linked to polysaccharide digestion. Strains from honey bees possess more such genes than strains from bumble bees. In Bifidobacterium, genes encoding carbohydrate-active enzymes are colocated within loci devoted to polysaccharide utilization, as in Bacteroides from the human gut. Carbohydrate-active enzyme-encoding gene expressions are up-regulated in response to particular hemicelluloses both in vitro and in vivo. Metabolomic analyses document that bees experimentally colonized by different strains generate distinctive gut metabolomic profiles, with enrichment for specific monosaccharides, corresponding to predictions from genomic data. The other 3 core gut species clusters (Snodgrassella and 2 Lactobacillus clusters) possess few or no genes for polysaccharide digestion. Together, these findings indicate that strain composition within individual hosts determines the metabolic capabilities and potentially affects host nutrition. Furthermore, the niche specialization revealed by our study may promote overall community stability in the gut microbiomes of bees.


Asunto(s)
Abejas/microbiología , Abejas/fisiología , Digestión , Microbioma Gastrointestinal/fisiología , Plantas/química , Polisacáridos/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Regulación de la Expresión Génica , Genoma Bacteriano , Lactobacillus/genética , Metagenoma , Microbiota , Neisseriaceae/genética , Polen/química
2.
PLoS One ; 12(7): e0180373, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683101

RESUMEN

BACKGROUND: The green lacewing, Chrysopa pallens Rambur, is one of the most important natural predators because of its extensive spectrum of prey and wide distribution. However, what we know about the nutritional and reproductive physiology of this species is very scarce. RESULTS: By cDNA amplification and Illumina short-read sequencing, we analyzed transcriptomes of C. pallens female adult under starved and fed conditions. In total, 71236 unigenes were obtained with an average length of 833 bp. Four vitellogenins, three insulin-like peptides and two insulin receptors were annotated. Comparison of gene expression profiles suggested that totally 1501 genes were differentially expressed between the two nutritional statuses. KEGG orthology classification showed that these differentially expression genes (DEGs) were mapped to 241 pathways. In turn, the top 4 are ribosome, protein processing in endoplasmic reticulum, biosynthesis of amino acids and carbon metabolism, indicating a distinct difference in nutritional and reproductive signaling between the two feeding conditions. CONCLUSIONS: Our study yielded large-scale molecular information relevant to C. pallens nutritional and reproductive signaling, which will contribute to mass rearing and commercial use of this predaceous insect species.


Asunto(s)
Ingestión de Alimentos/genética , Proteínas de Insectos/genética , Insectos/genética , Reproducción/genética , Transducción de Señal/genética , Transcriptoma , Animales , Agentes de Control Biológico/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Femenino , Privación de Alimentos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Proteínas de Insectos/metabolismo , Insectos/clasificación , Insectos/crecimiento & desarrollo , Insectos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Filogenia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA