Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537443

RESUMEN

BACKGROUND: Yi-Qi-Huo-Xue Decoction (YQHXD), a traditional Chinese medicine formula, has demonstrated efficacy in the clinical treatment of intracerebral hemorrhage (ICH) for over a decade. Nevertheless, the precise pharmacotherapeutic compounds of YQHXD capable of penetrating into cerebral tissue and the pharmacological underpinnings of YQHXD remain ambiguous. METHODS: The active components of YQHXD in rat brains was analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The potential targets, pathways and biological progresses of YQHXD ameliorating ICH induced injury was predicted by network pharmacology. Moreover, collagenase-induced ICH rat model, primary cortex neurons exposed to hemin and molecular docking were applied to validate the molecular mechanisms of YQHXD. RESULTS: Eleven active components of YQHXD were identified within the brains. Employing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, our investigation concentrated on the roles of autophagy and the BDNF/TrkB signaling pathway in the pharmacological context. The pharmacological results revealed that YQHXD alleviated neurological dysfunction, brain water content, brain swelling, and pathological injury caused by ICH. Meanwhile, YQHXD inhibited autophagy influx and autophagosome in vivo, and regulated cortex neuronal autophagy and TrkB/BDNF pathway both in vivo and in vitro. Subsequently, N-acetyl serotonin (NAS), a selective TrkB agonist, was employed to corroborate the significance of the BDNF/TrkB pathway in this process. The combination of NAS and YQHXD did not further enhance the protective efficacy of YQHXD in ICH rats. Additionally, outcomes of molecular docking analysis revealed that nine compounds of YQHXD exhibited potential regulatory effects on TrkB. CONCLUSIONS: Ipsilateral neuronal autophagy and BDNF/TrkB pathway were activated 72 h after ICH. YQHXD effectively resisted injury induced by ICH, which was related with suppression of ipsilateral neuronal autophagy via BDNF/TrkB pathway. This study provides novel insights into the therapeutic mechanisms of traditional Chinese medicine in the context of ICH treatment.


Asunto(s)
Autofagia , Factor Neurotrófico Derivado del Encéfalo , Hemorragia Cerebral , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Neuronas , Ratas Sprague-Dawley , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Autofagia/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Receptor trkB/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología
2.
J Agric Food Chem ; 72(9): 5073-5087, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377432

RESUMEN

Tobacco black shank (TBS), caused by Phytophthora nicotianae, poses a significant threat to tobacco plants. Selenium (Se), recognized as a beneficial trace element for plant growth, exhibited inhibitory effects on P. nicotianae proliferation, disrupting the cell membrane integrity. This action reduced the energy supply and hindered hyphal transport through membrane proteins, ultimately inducing hyphal apoptosis. Application of 8 mg/L Se through leaf spraying resulted in a notable decrease in TBS incidence. Moreover, Se treatment preserved chloroplast structure, elevated chitinase activities, ß-1,3-GA, polyphenol oxidase, phenylalanine ammonia-lyase, and increased hormonal content. Furthermore, Se enhanced flavonoid and sugar alcohol metabolite levels while diminishing amino acid and organic acid content. This shift promoted amino acid degradation and flavonoid synthesis. These findings underscore the potential efficacy of Se in safeguarding tobacco and potentially other plants against P. nicotianae.


Asunto(s)
Phytophthora , Selenio , Selenio/farmacología , Nicotiana , Membrana Celular , Metabolismo Energético , Aminoácidos/farmacología , Flavonoides/farmacología , Enfermedades de las Plantas
3.
Phytother Res ; 38(2): 713-726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009260

RESUMEN

Psoriasis, an immune-mediated chronic inflammatory skin disease, imposes a huge mental and physical burden on patients and severely affects their quality of life. Punicalagin (PU), the most abundant ellagitannin in pomegranates, has become a research hotspot owing to its diverse biological activities. However, its effects on psoriasis remain unclear. We explored the impact and molecular mechanism of PU on M5-stimulated keratinocyte cell lines and imiquimod (IMQ)-induced psoriasis-like skin inflammation in BABL/c mice using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), hematoxylin and eosin (H&E) stain, immunohistochemistry, and immunofluorescent. Administration of PU-enriched pomegranate extract at dosages of 150 and 250 mg/kg/day markedly attenuated psoriatic severity, abrogated splenomegaly, and reduced IMQ-induced abnormal epidermal proliferation, CD4+ T-cell infiltration, and inflammatory factor expression. Moreover, PU could decrease expression levels of pro-inflammatory cytokines, such as IL-1ß, IL-1α, IL-6, IL-8, TNF-α, IL-17A, IL-22, IL-23A, and reactive oxygen species (ROS), followed by keratinocyte proliferation inhibition in the M5-stimulated cell line model of inflammation through inhibition of mitogen-activated protein kinases/extracellular regulated protein kinases (MAPK/ERK) and nuclear factor kappaB (NF-κB) signaling pathways. Our results indicate that PU may serve as a promising nutritional intervention for psoriasis by ameliorating cellular oxidative stress and inflammation.


Asunto(s)
Psoriasis , Enfermedades de la Piel , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Imiquimod/efectos adversos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Calidad de Vida , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Piel , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Transducción de Señal , Queratinocitos , Administración Oral , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
4.
J Hazard Mater ; 461: 132641, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37797574

RESUMEN

Chromium (Cr) is a hazardous heavy metal that negatively affects animals and plants. The micronutrients selenium (Se) and molybdenum (Mo) have been widely shown to alleviate heavy metal toxicity in plants. However, the molecular mechanism of Cr chelation on the cell wall by combined treatment with Se and Mo has not been reported. Therefore, this study aimed to explore the effects of Se-Mo interactions on the subcellular distribution of Cr (50 µM) and on cell wall composition, structure, functional groups and Cr content, in addition to performing a comprehensive analysis of the transcriptome. Our results showed that the cell walls of shoots and roots accumulated 51.0% and 65.0% of the Cr, respectively. Furthermore, pectin in the cell wall bound 69.5%/90.2% of the Cr in the shoots/roots. Se-Mo interactions upregulated the expression levels of related genes encoding galacturonosyltransferase (GAUT), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-glucose-4-epimerase (GALE), involved in polysaccharide biosynthesis, thereby increasing pectin and cellulose levels. Moreover, combined treatment with Se and Mo increased the lignin content and cell wall thickness by upregulating the expression levels of genes encoding cinnamyl alcohol dehydrogenase (CAD), peroxidase (POX) and phenylalanine amino-lyase (PAL), involved in lignin biosynthesis. Fourier-transform infrared (FTIR) spectroscopy results showed that Se + Mo treatment (in combination) increased the number of carboxylic acid groups (-COOH) groups, thereby enhancing the Cr chelation ability. The results not only elucidate the molecular mechanism of action of Se-Mo interactions in mitigating Cr toxicity but also provide new insights for phytoremediation and food safety.


Asunto(s)
Selenio , Selenio/farmacología , Selenio/metabolismo , Molibdeno/toxicidad , Nicotiana/genética , Nicotiana/metabolismo , Cromo/metabolismo , Lignina , Pectinas/farmacología , Pared Celular/metabolismo
5.
Zhen Ci Yan Jiu ; 48(11): 1142-1150, 2023 Nov 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37984912

RESUMEN

OBJECTIVES: To observe the effect of acupuncture on the expressions of neuropeptides and related inflammatory factors in rats with diarrhea-predominant irritable bowel syndrome(IBS-D), so as to explore the mechanism of acupuncture in the treatment of IBS-D. METHODS: Male Wistar rats were randomly divided into blank group, model group, medication group, and acupuncture group, with 6 rats in each group. Except for the blank group, the other groups were subjected to 14-day "acetic acid enema + restraint stress" to establish the IBS-D rat model. After successful modeling, the medication group received gavage of pinaverium bromide(15 mg/kg) once a day, and the acupuncture group received acupuncture at "Baihui"(GV20) and bilateral "Tianshu"(ST25), "Shangjuxu"(ST37), "Zusanli"(ST36), and "Taichong"(LR3) for 20 min every day, both groups were treated continuously for 14 days. The general state of the rats in each group was observed, and the body weight of the rats was measured. The open-field experiment was conducted to measure the horizontal and vertical movements, and the number of fecal pellets of rats. The histopathological morphology of hypothalamus and colon of rats was observed by HE staining. Toluidine blue staining was used to observe and count the mast cells(MCs) in the colon tissue of rats. ELISA was used to detect the serum contents of tumor necrosis factor-α(TNF-α) and interleukin(IL)-10. Real-time fluorescence quantitative PCR was performed to detect the mRNA expressions of calcitonin gene-related peptide(CGRP) in the hypothalamus and colon tissue. Western blot was used to detect the expressions of corticotropin-releasing factor(CRF) in the hypothalamus and colon tissue. RESULTS: HE staining showed that there was inflammatory cell infiltration in the lamina propria of colon in the model group, and it was reduced in the other groups. Compared with the blank group, the model group showed significantly decreased body weight, decreased walking distance and upright times in open field experiment, decreased serum IL-10 contents(P<0.05, P<0.01), increased fecal pellet number (P<0.01), increased MC number in the colon tissue, serum TNF-α contents, and CGRP mRNA expressions and CRF expressions in the hypothalamus and colon tissue(P<0.01). Compared with the model group, both medication and acupuncture groups showed significantly increased body weight, walking distance and upright times in the open-field experiment, and serum IL-10 contents(P<0.01, P<0.05), significantly decreased fecal pellet number (P<0.05), significantly decreased MC number in the colon tissue, serum TNF-α contents, and CGRP mRNA expressions in the hypothalamus and colon tissue(P<0.01);at the same time, the acupuncture group showed significantly decreased CRF expressions in the hypothalamus and colon tissue(P<0.01, P<0.05). There was no significant difference in the above indicators between the medication group and the acupuncture group. CONCLUSIONS: Acupuncture can improve the general and emotional state, inflammatory response, and neuropeptide expression in rats with IBS-D, and alleviate the symptoms of IBS-D, which may be related to the regulation of neuropeptides and inflammatory factors levels.


Asunto(s)
Terapia por Acupuntura , Síndrome del Colon Irritable , Ratas , Masculino , Animales , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/metabolismo , Interleucina-10 , Diarrea/genética , Diarrea/terapia , Hormona Liberadora de Corticotropina , Péptido Relacionado con Gen de Calcitonina , Factor de Necrosis Tumoral alfa/genética , Ratas Sprague-Dawley , Ratas Wistar , Peso Corporal , ARN Mensajero , Puntos de Acupuntura
6.
J Health Popul Nutr ; 42(1): 73, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496103

RESUMEN

BACKGROUND: Vitamin D deficiency is one of the most prevalent health problems worldwide in all age groups, whereas vitamin D status of Chinese college students was seldom studied in China. The purpose of this study was to explore the vitamin D status in Chinese college freshmen and its influencing factors, providing evidence for nutrition strategy application. METHODS: Information including demographic status, diet habit, physical activity, and ultraviolet ray (UV) protection was collected by online questionnaire. Serum 25(OH)D3 concentrations were measured using a liquid chromatograph mass spectrometer. Multivariate linear regression analyses were used to explore the comprehensive influence of diet, physical activity and UV protection on serum 25(OH)D3 levels. RESULTS: Totally 1667 freshmen from 26 provinces, autonomous districts or municipalities, were recruited, with a mean age of 18.6 ± 0.9 years. The mean serum 25(OH)D3 levels were 18.1 ± 6.3 ng/mL and the proportion of vitamin D deficiency and insufficiency was 67.5% and 27.8%, respectively. Multivariate linear regression indicated that higher intake of milk and yogurt, calcium or vitamin D supplementation, and longer time of outdoor activity were positively linked to higher serum 25(OH)D3, while higher intake of candy and higher UV protection index were negatively associated with serum 25(OH)D3, after adjusted for age, gender, region of original residence, latitudes, longitude and BMI. CONCLUSIONS: Vitamin D deficiency is very common in Chinese college students. Milk and yogurt intake and outdoor activity should be encouraged while candy intake should be limited for preventing vitamin D deficiency. Public health policies should focus on these changeable lifestyles and consider well-balanced guidelines on UV protection and vitamin D supplementation.


Asunto(s)
Deficiencia de Vitamina D , Vitamina D , Humanos , Adolescente , Adulto Joven , Adulto , Dieta , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/prevención & control , Ejercicio Físico , Estudiantes , Suplementos Dietéticos
7.
J Hazard Mater ; 452: 131272, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003006

RESUMEN

Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.


Asunto(s)
Selenio , Suelo , Humanos , Suelo/química , Selenio/toxicidad , Biodegradación Ambiental , Ácido Selénico , Ácido Selenioso , Plantas
8.
Ecotoxicol Environ Saf ; 248: 114312, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455352

RESUMEN

Chromium (Cr) is a harmful heavy metal that poses a serious threat to plants and animals. Selenium (Se) and molybdenum (Mo) are two beneficial elements for plant growth and resistance. However, their interactive effects on Cr uptake and distribution are poorly understood. Therefore, a hydroponics experiment was conducted to explore the effects of the use of Se and Mo alone and simultaneously on mitigating Cr toxicity. In this study, Nicotiana tabacum L. seedlings were exposed to control, 50 µM Cr, 50 µM Cr + 2 µM Se, 50 µM Cr + 1 µM Mo, or 50 µM Cr + 2 µM Se + 1 µM Mo in Hoagland solution. After 2 weeks, the plant biomass, Cr, Se and Mo contents, photosynthesis, leaf ultrastructure, antioxidant system, subcellular distribution and associated gene expression in Nicotiana tabacum L. were determined. The results showed that simultaneous use of Se and Mo promoted tobacco growth under Cr stress, as evidenced by reducing reactive oxygen species (ROS) content and reducing Cr translocation factor (TF) and inducing a 51.3% reduction in Cr content in shoots. Additionally, Se-Mo interactions increased the levels of glutathione (GSH) and phytochelatin (PC) and the distribution of Cr in the cell walls and organelles. Furthermore, the relative expression of PCS1 was upregulated, while those of NtST1 and MSN1 were downregulated. The results concluded that the simultaneous use of Se and Mo effectively alleviated Cr toxicity in Nicotiana tabacum L., which not only offers an efficient way for crops to resist Cr toxicity but also provides evidence for the benefit of Se combined with Mo.


Asunto(s)
Selenio , Animales , Selenio/farmacología , Molibdeno/farmacología , Nicotiana , Cromo/toxicidad , Transporte Biológico , Glutatión
9.
World J Gastroenterol ; 28(28): 3644-3665, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36161055

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic, nonspecific intestinal inflammatory disease. Acupuncture and moxibustion is proved effective in treating UC, but the mechanism has not been clarified. Proteomic technology has revealed a variety of biological markers related to immunity and inflammation in UC, which provide new insights and directions for the study of mechanism of acupuncture and moxibustion treatment of UC. AIM: To investigate the mechanism of electroacupuncture (EA) and herb-partitioned moxibustion (HM) on UC rats by using proteomics technology. METHODS: Male Sprague-Dawley rats were randomly divided into the normal (N) group, the dextran sulfate sodium (DSS)-induced UC model (M) group, the HM group, and the EA group. UC rat model was prepared with 3% DSS, and HM and EA interventions at the bilateral Tianshu and Qihai acupoints were performed in HM or EA group. Haematoxylin and eosin staining was used for morphological evaluation of colon tissues. Isotope-labeled relative and absolute quantification (iTRAQ) and liquid chromatography-tandem mass spectrometry were performed for proteome analysis of the colon tissues, followed by bioinformatics analysis and protein-protein interaction networks establishment of differentially expressed proteins (DEPs) between groups. Then western blot was used for verification of selected DEPs. RESULTS: The macroscopic colon injury scores and histopathology scores in the HM and EA groups were significantly decreased compared to the rats in the M group (P < 0.01). Compared with the N group, a total of 202 DEPs were identified in the M group, including 111 up-regulated proteins and 91 down-regulated proteins, of which 25 and 15 proteins were reversed after HM and EA interventions, respectively. The DEPs were involved in various biological processes such as biological regulation, immune system progression and in multiple pathways including natural killer cell mediated cytotoxicity, intestinal immune network for immunoglobulin A (IgA) production, and FcγR-mediated phagocytosis. The Kyoto Encyclopedia of Genes and Genomes pathways of DEPs between HM and M groups, EA and M groups both included immune-associated and oxidative phosphorylation. Network analysis revealed that multiple pathways for the DEPs of each group were involved in protein-protein interactions, and the expression of oxidative phosphorylation pathway-related proteins, including ATP synthase subunit g (ATP5L), ATP synthase beta subunit precursor (Atp5f), cytochrome c oxidase subunit 4 isoform 1 (Cox4i1) were down-regulated after HM and EA interventions. Subsequent verification of selected DEPs (Synaptic vesicle glycoprotein 2A; nuclear cap binding protein subunit 1; carbamoyl phosphate synthetase 1; Cox4i1; ATP synthase subunit b, Atp5f1; doublecortin like kinase 3) by western blot confirmed the reliability of the iTRAQ data, HM and EA interventions can significantly down-regulate the expression of oxidative phosphorylation-associated proteins (Cox4i1, Atp5f1) (P < 0.01). CONCLUSION: EA and HM could regulate the expression of ATP5L, Atp5f1, Cox4i1 that associated with oxidative phosphorylation, then might regulate immune-related pathways of intestinal immune network for IgA production, FcγR-mediated phagocytosis, thereby alleviating colonic inflammation of DSS-induced UC rats.


Asunto(s)
Colitis Ulcerosa , Electroacupuntura , Moxibustión , Puntos de Acupuntura , Adenosina Trifosfato , Animales , Carbamoil Fosfato , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/terapia , Sulfato de Dextran/toxicidad , Proteínas de Dominio Doblecortina , Complejo IV de Transporte de Electrones , Eosina Amarillenta-(YS) , Glicoproteínas , Inmunoglobulina A , Inflamación , Ligasas , Masculino , Proteoma , Proteómica , Proteínas de Unión a Caperuzas de ARN , Ratas , Ratas Sprague-Dawley , Receptores de IgG , Reproducibilidad de los Resultados
10.
Artículo en Inglés | MEDLINE | ID: mdl-35600949

RESUMEN

Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate the transcription of target genes. Bile acids (BAs) can be used as effector molecules to regulate physiological processes in the gut, and NRs are important receptors for bile acid signaling. Relevant studies have shown that NRs are closely related to the occurrence of Crohn's disease (CD). Although the mechanism of NRs in CD has not been clarified completely, growing evidence shows that NRs play an important role in regulating intestinal immunity, mucosal barrier, and intestinal flora. NRs can participate in the progress of CD by mediating inflammation, immunity, and autophagy. As the important parts of traditional Chinese medicine (TCM) therapy, acupuncture and moxibustion in the treatment of CD curative mechanism can get a lot of research support. At the same time, acupuncture and moxibustion can regulate the changes of related NRs. Therefore, to explore whether acupuncture can regulate BA circulation and NRs expression and then participate in the disease progression of CD, a new theoretical basis for acupuncture treatment of CD is provided.

11.
Chemosphere ; 287(Pt 2): 132136, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34492417

RESUMEN

Exogenous selenium (Se) improves the tolerance of plants to abiotic stress. However, the effects and mechanisms of different Se species on drought stress alleviation are poorly understood. This study aims to evaluate and compare the different effects and mechanisms of sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) on the growth, photosynthesis, antioxidant system, osmotic substances and stress-responsive gene expression of Nicotiana tabacum L. under drought stress. The results revealed that drought stress could significantly inhibit growth, whereas both Na2SeO4 and Na2SeO3 could significantly facilitate the growth of N. tabacum under drought stress. However, compared to Na2SeO3, Se application as Na2SeO4 induced a significant increase in the root tip number and number of bifurcations under drought stress. Furthermore, both Na2SeO4 and Na2SeO3 displayed higher levels of photosynthetic pigments, better photosynthesis, and higher concentrations of osmotic substances, antioxidant enzymes, and stress-responsive gene (NtCDPK2, NtP5CS, NtAREB and NtLEA5) expression than drought stress alone. However, the application of Na2SeO4 showed higher expression levels of the NtP5CS and NtAREB genes than Na2SeO3. Both Na2SeO4 and Na2SeO3 alleviated many of the deleterious effects of drought in leaves, which was achieved by reducing stress-induced lipid peroxidation (MDA) and H2O2 content by enhancing the activity of antioxidant enzymes, while Na2SeO4 application showed lower H2O2 and MDA content than Na2SeO3 application. Overall, the results confirm the positive effects of Se application, especially Na2SeO4 application, which is markedly superior to Na2SeO3 in the role of resistance towards abiotic stress in N. tabacum.


Asunto(s)
Ácido Selenioso , Selenio , Sequías , Peróxido de Hidrógeno , Ácido Selénico , Ácido Selenioso/toxicidad , Selenio/toxicidad , Nicotiana
12.
J Tradit Chin Med ; 41(5): 789-798, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34708638

RESUMEN

OBJECTIVE: To observe the effect of herb-partitioned moxibustion (HPM) on the miRNA expression profile of thyroid tissue in experimental autoimmune thyroiditis (EAT) rats. METHODS: Rats were randomly divided into normal control (NC) group, EAT model (EAT) group, HPM group and western medicine (Med) group. EAT model rats were prepared by a combined immunization with complete and incomplete Freund's adjuvant emulsified with porcine thyroglobulin and iodine. Rats in the HPM group were treated with HPM, while rats in the Med group were treated with levothyrocine (1 µg/2 mL) by gavage. HE staining was used to observe the pathological morphological changes of thyroid tissue, ELISAs was uaed to detect the serum concentrations of TGAb, TPOAb, FT3, FT4, TSH. We then performed high-throughput miRNA sequencing to analyse the miRNA expression profiles in the thyroid tissues, followed by a bioinformatics analysis. RT-qPCR was used to verify the identified differentially expressed miRNAs. RESULTS: HPM improved the thyroid tissue morphology and reduced serum TPOAb, TGAb, TSH concentration in EAT rats (P < 0.05), but with no obvious effect on FT3 and FT4 concentration. While the TSH, FT3 and FT4 concentration was significantly changed in the Med group (P < 0.01 or P < 0.05) compared with that of EAT group. Sequencing results showed that a total of 17 miRNAs were upregulated, and 4 were downregulated in the EAT rats, in which the expression levels of miR-346 and miR-331-5p were reversed by HPM. The target genes of the miRNAs that regulated by HPM were associated with a variety of immune factors and immune signals. RT-qPCR verification showed that the expression of miRNA-346 and miRNA-331-5p was consistent with the sequencing results. CONCLUSIONS: HPM could regulate the the expression of miRNA-346 and miRNA-331-5p, then act on their target genes to immune and inflammation-related pathways, which may be one of the mechanisms of HPM on EAT rats.


Asunto(s)
MicroARNs , Moxibustión , Tiroiditis Autoinmune , Animales , MicroARNs/genética , Moxibustión/métodos , Ratas , Tiroiditis Autoinmune/genética , Tiroiditis Autoinmune/terapia
13.
Front Pharmacol ; 12: 656115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276360

RESUMEN

Background: Si-Ni-San (SNS), a commonly used traditional Chinese medicine (TCM) formula, has potency against liver diseases, such as hepatitis and non-alcoholic fatty liver disease (NAFLD). However, the therapeutic efficacy and pharmacological mechanisms of action of SNS against liver fibrosis remain largely unclear. Methods: A carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was adopted for the first time to investigate the beneficial effects of SNS on liver fibrosis. The potential mechanisms of action of SNS were explored using the network pharmacology-based strategy and validated with the aid of diverse assays. Results: SNS treatment reduced collagen and ECM deposition, downregulated fibrosis-related factor (hyaluronic acid and laminin) contents in serum, maintained the morphological structure of liver tissue, and improved liver function in the liver fibrosis model. Based on network pharmacology results, apoptosis, inflammation and angiogenesis, together with the associated pathways (including VEGF, TNF, caspase, PPAR-γ and NF-κB), were identified as the mechanisms underlying the effects of SNS on liver fibrosis. Further in vivo experiments validated the significant mitigatory effects of SNS on inflammatory infiltration and pro-inflammatory cytokine contents (IFNγ, IL-1ß and TGF-ß1) in liver tissues of mice with liver fibrosis. SNS suppressed pathologic neovascularization as well as levels of VEGFR1, VEGF and VEGFR2 in liver tissues. SNS treatment additionally inhibited hepatic parenchyma cell apoptosis in liver tissues of mice with liver fibrosis and regulated apoptin expression while protecting L02 cells against apoptosis induced by TNF-α and Act D in vitro. Activation of hepatic stellate cells was suppressed and the balance between MMP13 and TIMP1 maintained in vitro by SNS. These activities may be associated with SNS-induced NF-κB suppression and PPAR-γ activation. Conclusion: SNS effectively impedes liver fibrosis progression through alleviating inflammation, ECM accumulation, aberrant angiogenesis and apoptosis of hepatic parenchymal cells along with inhibiting activation of hepatic stellate cells through effects on multiple targets and may thus serve as a novel therapeutic regimen for this condition.

14.
World J Gastroenterol ; 26(39): 5997-6014, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33132650

RESUMEN

BACKGROUND: Autophagy is an evolutionarily conserved biological process in eukaryotic cells that involves lysosomal-mediated degradation and recycling of related cellular components. Recent studies have shown that autophagy plays an important role in the pathogenesis of Crohn's disease (CD). Herbal cake-partitioned moxibustion (HM) has been historically practiced to treat CD. However, the mechanism by which HM regulates colonic autophagy in CD remains unclear. AIM: To observe whether HM can alleviate CD by regulating colonic autophagy and to elucidate the underlying mechanism. METHODS: Rats were randomly divided into a normal control (NC) group, a CD group, an HM group, an insulin + CD (I + CD) group, an insulin + HM (I + HM) group, a rapamycin + CD (RA + CD) group, and a rapamycin + HM (RA + HM) group. 2,4,6-trinitrobenzenesulfonic acid was administered to establish a CD model. The morphology of the colonic mucosa was observed by hematoxylin-eosin staining, and the formation of autophagosomes was observed by electron microscopy. The expression of autophagy marker microtubule-associated protein 1 light chain 3 beta (LC3B) was observed by immunofluorescence staining. Insulin and rapamycin were used to inhibit and activate colonic autophagy, respectively. The mRNA expression levels of phosphatidylinositol 3-kinase class I (PI3KC1), Akt1, LC3B, sequestosome 1 (p62), and mammalian target of rapamycin (mTOR) were evaluated by RT-qPCR. The protein expression levels of interleukin 18 (IL-18), tumor necrosis factor-α (TNF-α), nuclear factor κB/p65 (NF-κB p65), LC3B, p62, coiled-coil myosin-like BCL2-interacting protein (Beclin-1), p-mTOR, PI3KC1, class III phosphatidylinositol 3-kinase (PI3KC3/Vps34), and p-Akt were evaluated by Western blot analysis. RESULTS: Compared with the NC group, the CD group showed severe damage to colon tissues and higher expression levels of IL-18 and NF-κB p65 in colon tissues (P < 0.01 for both). Compared with the CD group, the HM group showed significantly lower levels of these proteins (P IL-18 < 0.01 and P p65 < 0.05). There were no significant differences in the expression of TNF-α protein in colon tissue among the rat groups. Typical autophagic vesicles were found in both the CD and HM groups. The expression of the autophagy proteins LC3B and Beclin-1 was upregulated (P < 0.01 for both) in the colon tissues of rats in the CD group compared with the NC group, while the protein expression of p62 and p-mTOR was downregulated (P < 0.01 for both). However, these expression trends were significantly reversed in the HM group compared with the CD group (P LC3B < 0.01, P Beclin-1 < 0.05, P p62 < 0.05, and P m-TOR < 0.05). Compared with those in the RA + CD group, the mRNA expression levels of PI3KC1, Akt1, mTOR, and p62 in the RA + HM group were significantly higher (P PI3KC1 < 0.01 and P Akt1, mTOR, and p62 < 0.05), while those of LC3B were significantly lower (P < 0.05). Compared with the RA + CD group, the RA + HM group exhibited significantly higher PI3KC1, p-Akt1, and p-mTOR protein levels (P PI3KC1 < 0.01, P p-Akt1 < 0.05, and P p-mTOR < 0.01), a higher p62 protein level (P = 0.057), and significantly lower LC3B and Vps34 protein levels (P < 0.01 for both) in colon tissue. CONCLUSION: HM can activate PI3KC1/Akt1/mTOR signaling while inhibiting the PI3KC3 (Vps34)-Beclin-1 protein complex in the colon tissues of CD rats, thereby inhibiting overactivated autophagy and thus exerting a therapeutic effect.


Asunto(s)
Fenómenos Biológicos , Enfermedad de Crohn , Moxibustión , Animales , Autofagia , Colon , Enfermedad de Crohn/terapia , Fosfatidilinositol 3-Quinasas , Ratas
15.
Artículo en Inglés | MEDLINE | ID: mdl-32831864

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic recurrent inflammation of the colon, and clinical outcome of UC is still unsatisfied. Pingkui enema, a traditional Chinese medicine prescription, has been safely applied for the treatment of diarrhea and dysentery in clinic for many years. However, its mechanism is still elusive. The present study is designed to investigate the effect of Pingkui enema on trinitrobenzene sulfonic acid- (TNBS-) induced ulcerative colitis (UC) and possible mechanism in rats. METHODS: UC was induced by intracolonic instillation of TNBS in male Sprague-Dawley rats, which were treated with different dosages of Pingkui enema (low, medium, and high) or sulfasalazine for ten days. Survival rate was calculated. A clinical disease activity score was evaluated. Histological colitis severity was analyzed by hematoxylin-eosin (HE) staining. Content of Bifidobacterium in intestinal tissue was analyzed by RT-PCR. Concentration of IL-8, IL-13, TNF-α, D-lactic acid (D-LA), and diamine oxidase (DAO) in serum and contents of adhesin and receptor of Bifidobacterium adhesion in rat intestinal mucus were measured by ELISA. RESULTS: The results showed that Pingkui enema treatment with high dosage markedly improved the survival rate compared with untreated and sulfasalazine treated groups. All dosages of Pingkui enema reduced pathological score. High dosage of Pingkui enema and sulfasalazine treatments significantly reduced the serum concentration of IL-8, TNF-α, D-LA, and DAO and markedly increased the serum concentration of IL-13. In addition, high-dose Pingkui enema and sulfasalazine treatments increased gut content of Bifidobacterium, gut mucus expressions of adhesin, and adhesin receptor of Bifidobacterium. CONCLUSIONS: Pingkui enema has therapeutic effect on TNBS-induced UC, and possible mechanism may be via regulation of gut probiotics (Bifidobacterium) and inflammatory factors and protection of intestinal mucosal barrier.

16.
World J Clin Cases ; 8(8): 1515-1524, 2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32368545

RESUMEN

BACKGROUND: Ulcerative colitis (UC), also known as chronic nonspecific UC, is an inflammatory bowel disease characterized by diffuse colonic mucosal inflammation. The incidence and prevalence of UC have risen markedly, and the disease seriously affects the quality of life of patients, and poses a great burden on the world health care infrastructure and economy. CASE SUMMARY: We present a 60-year-old man who had ulcerative colitis for more than 10 years, with recurrent abdominal pain, bloody diarrhea with mucopurulent stool. The treatments with sulfasalazine, mesalazine, and traditional Chinese medicine were not effective, and herbs-partitioned moxibustion (HPM) was then applied at "Zhongwan" (RN12), "Tianshu"(ST25), and "Qihai" (RN6) once a day for about 30 min, 3 times per week, for 6 mo.His main clinical symptoms of abdominal pain, bloody diarrhea with mucopurulent stool gradually improved, and the mucosa had nearly healed, as observed under endoscopy by the 6th mo. The patient's condition was alleviated without relapsing during the subsequent 3-mo follow-up period. HPM showed a significant effect in the treatment of ulcerative colitis in this case, and the effect would help the patient to maintain remission for at least 3 mo. CONCLUSION: A series of symptoms of this UC patient significantly improved with the treatment of HPM.

17.
Sci Rep ; 9(1): 19046, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836761

RESUMEN

Growing evidence has suggested a possible relationship between dietary calcium intake and metabolic syndrome (MetS) risk. However, the findings of these observational studies are inconclusive, and the dose-response association between calcium intake and risk of MetS remains to be determined. Here, we identified relevant studies by searching PubMed and Web of Science databases up to December 2018, and selected observational studies reporting relative risk (RR) with 95% confidence interval (CI) for MetS based on calcium intake and estimated the summary RRs using random-effects models. Eight cross-sectional and two prospective cohort studies totaling 63,017 participants with 14,906 MetS cases were identified. A significantly reduced risk of MetS was associated with the highest levels of dietary calcium intake (RR: 0.89; 95% CI: 0.80-0.99; I2 = 75.3%), with stronger association and less heterogeneity among women (RR: 0.74, 95% CI: 0.66-0.83; I2 = 0.0%) than among men (RR: 1.06, 95% CI: 0.82-1.37; I2 = 72.6%). Our dose-response analysis revealed that for each 300 mg/day increase in calcium intake, the risk of MetS decreased by 7% (RR: 0.93; 95% CI: 0.87-0.99; I2 = 77.7%). In conclusion, our findings suggest that dietary calcium intake may be inversely associated with the risk of MetS. These findings may have important public health implications with respect to preventing the disease. Further studies, in particular longitudinal cohort studies and randomized clinical trials, will be necessary to determine whether calcium supplementation is effective to prevent MetS.


Asunto(s)
Calcio de la Dieta/farmacología , Conducta Alimentaria , Síndrome Metabólico/prevención & control , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
18.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374993

RESUMEN

Cadmium (Cd) is an environmental pollutant that potentially threatens human health worldwide. Developing approaches for efficiently treating environmental Cd is a priority. Selenium (Se) plays important role in the protection of plants against various abiotic stresses, including heavy metals. Previous research has shown that Se can alleviate Cd toxicity, but the molecular mechanism is still not clear. In this study, we explore the function of auxin and phosphate (P) in tobacco (Nicotiana tabacum), with particular focus on their interaction with Se and Cd. Under Cd stress conditions, low Se (10 µM) significantly increased the biomass and antioxidant capacity of tobacco plants and reduced uptake of Cd. We also measured the auxin concentration and expression of auxin-relative genes in tobacco and found that plants treated with low Se (10 µM) had higher auxin concentrations at different Cd supply levels (0 µM, 20 µM, 50 µM) compared with no Se treatment, probably due to increased expression of auxin synthesis genes and auxin efflux carriers. Overexpression of a high affinity phosphate transporter NtPT2 enhanced the tolerance of tobacco to Cd stress, possibly by increasing the total P and Se content and decreasing Cd accumulation compared to that in the wild type (WT). Our results show that there is an interactive mechanism among P, Se, Cd, and auxin that affects plant growth and may provide a new approach for relieving Cd toxicity in plants.


Asunto(s)
Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Ácidos Indolacéticos/metabolismo , Nicotiana/metabolismo , Selenio/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/crecimiento & desarrollo
19.
Artículo en Inglés | MEDLINE | ID: mdl-30956679

RESUMEN

OBJECTIVE: To investigate the immune regulation mechanism of herb-partitioned moxibustion in rats with Crohn's disease (CD) focusing on autophagy. METHODS: Rats were randomly divided into normal (N) group, CD model (M) group, CD model with herb-partitioned moxibustion (MM) group, normal with herb-partitioned moxibustion (NM) group, CD model with mesalazine (western medicine, Med ) group, and normal saline (NS) group, with 10 rats in each group. The CD model rats were prepared by trinitrobenzene sulphonic expect for the N group and NM group. After the CD rats model were established, the rats in the MM and NM groups were treated with herb-partitioned moxibustion at Tianshu (ST25) and Qihai (CV6) acupoints once daily for 7 days, and rats in the Med and NS groups were respectively treated with mesalazine enteric coated tablet and normal saline once daily for 7 days. After intervention, hematoxylin-eosin staining was used to observe the histological changes of colon; RNA sequencing was used to observe the changes in autophagy- and immune-associated gene expression profiles. In addition, autophagy- and immune-associated cytokines and signaling pathways in CD rats were also screened. RESULTS: HPM significantly increased the body weight of CD rats (P<0.01) and improved the pathological injury of colon in CD rats (P<0.01). HPM also changed the expression of many autophagy- and immune-associated genes, especially downregulating the expression of autophagy-associated Nod2, Irgm genes as well as the receptor of immune-associated Il12b, Il22 (Il12rb1, Il22ra2) genes in the colon of CD rats. HPM also changed the enrichment levels of differentially expressed genes in the human T-cell leukemia virus type-1 infection pathway, the Epstein-Barr virus infection pathway, and the cell adhesion molecule pathway. In addition, the expression levels of Nod2, Irgm, IL-12b, and IL-22 mRNA were increased (all P< 0.01) in the M group compared to the N group, while the expression levels of Nod2, Irgm, IL-12b, and IL-22 mRNA were decreased (P<0.05 or P<0.01) in the MM and Med groups compared to the M group. CONCLUSION: Herb-partitioned moxibustion may effectively attenuate intestinal inflammation and promote the repair of colon mucosal injury of CD rats through the regulation of autophagy- and immune-associated gene expression and signaling pathways.

20.
Ying Yong Sheng Tai Xue Bao ; 29(10): 3416-3424, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30325168

RESUMEN

Phosphorus is the necessary element for plant growth, and its concentration is one of the main indices for water eutrophication. Hence, it is significant to understand how woody plants purify phosphorus in eutrophic water. The purpose of this study is to reveal the P absorption and removal mechanism of Salix matsudana in eutrophic water with different P concentration. We selected new S. matsudana clone (A42) as experimental material and set three levels of P concentration (low P: 0.1, 0.2 mg·L-1; medium P: 1.0, 2.0 mg·L-1, high P: 10.0 mg·L-1), and the floating bed hydroponic experiment was conducted at the greenhouse from July to September, 2017. We found that S. matsudana efficiently removed P in water (removal rate >79% in 21 days). There was a positive correlation between the removal quantity and P concentration in the water. The removal ratio rose at first and then fell with increasing P. Owing to the purification of S. matsudana, the P concentrations ranging from 0.1 mg·L-1 to 1.0 mg·L-1 were reduced to minimum threshold concentration of eutrophication (0.016-0.032 mg·L-1) in seven days. The percentage of phosphorus input in water that assimilated by S. matsudana ranged from 29.0% to 66.9%. The quantity and ratio of assimilated P were respectively positive and negative relation with P concentration. Salix matsudana adapted to eutrophic water with different P concentrations and normally grew during experiment period, with root-shoot ratio being significantly increased with decreases of water P concentrations. The characteristic of phosphorus distribution in plant organs was: stem> leave>root, while the translocation factors (TF) of nitrogen and phosphorus were both greater than 3. When S. matsudana grew in eutrophic water with high phosphorus concentration, the TF of nitrogen and phosphorus significantly increased to 4.53±0.24 and 4.92±0.62 respectively. Our results indicated that S. matsudanais could purify the eutrophic water and it could normally grow. New clone of S. matsudana could effectively absorb phosphorus in the water and accumulated it in the stem, which could reduce secondary pollution. In conclusion, S. matsudana could be used for a short-term treatment on the eutrophic water with low P concentration, while for the long-term treatment it is adapted to eutrophic water with high phosphorus concentrations.


Asunto(s)
Salix , Biodegradación Ambiental , Eutrofización , Hidroponía , Nitrógeno , Fósforo , Desarrollo de la Planta , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA