Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 325: 117783, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38246480

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The roots of Asarum heterotropoides F. Maekawa var. mandshuricum F. Maekawa (AR) is a traditional herbal medicine used across Asia, including Korea, China, and Japan. AR exhibits a range of biological activities, such as anti-inflammatory, anti-cancer, cold treatment, and anti-nociceptive effects. Various extraction methods, including decoction, which utilizes traditional knowledge and techniques. The AR decoction extract expected to contain fewer toxicants and have reduced toxicity due to the use of hot water in the extraction process. However, scientific evidence on the toxicity of AR decoction extracts is lacking, necessitating further studies for safe usage. AIM OF THE STUDY: This study aimed to evaluate the genotoxicity and toxicity of single and repeated administration of AR decoction extracts. MATERIALS AND METHODS: The genotoxicity was assessed using a bacterial reverse mutation (Ames test), an in vitro mammalian chromosome aberration test (CA test), and an in vivo micronucleus test (MN test) in Sprague-Dawley (SD) rats. The general toxicity was evaluated through single-dose and 13-week repeated-dose toxicity studies. In the single-dose toxicity study, 40 SD rats were orally administered AR decoction extract at doses of 1000, 2000, and 5000 mg/kg. In the 13-week repeated-dose toxicity study, 140 SD rats received daily oral doses of 0, 250, 500, 1000, 2000, and 5000 mg/kg of AR decoction extract. RESULTS: The genotoxicity tests revealed that AR decoction extract was not genotoxic. The single-dose toxicity study showed no changes in body weight, clinical pathology, or macroscopic findings, with the approximate lethal dose (ALD) exceeding 5000 mg/kg. The 13-week repeated-dose toxicity study demonstrated no treatment-related changes in body weight, general symptoms, hematology, clinical chemistry, or urinalysis. Histopathological findings revealed hyperplasia of squamous cells in the forestomach after AR decoction extract administration, a treatment-related effect that resolved during the recovery period. The no observed adverse effect level (NOAEL) for both male and female rats was estimated to be 2000 mg/kg. CONCLUSIONS: This study establishes the non-toxic dose of AR decoction extract, providing a foundation for further non-clinical and clinical evaluations AR safety.


Asunto(s)
Asarum , Extractos Vegetales , Ratas , Masculino , Femenino , Animales , Extractos Vegetales/toxicidad , Ratas Sprague-Dawley , Antiinflamatorios/farmacología , Peso Corporal , Mamíferos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36868693

RESUMEN

The roots of Paeonia lactiflora Pall., (Paeoniae Radix, PL) are a well-known herbal remedy used to treat fever, rheumatoid arthritis, systemic lupus erythematosus, hepatitis, and gynecological disorders in East Asia. Here we evaluated the genetic toxicity of PL extracts (as a powder [PL-P] and hot-water extract [PL-W]) in accordance with the Organization for Economic Co-operation and Development guidelines. The Ames test revealed that PL-W was not toxic to S. typhimurium strains and E. coli in absence and presence of the S9 metabolic activation system at concentrations up to 5000 µg/plate, but PL-P produced a mutagenic response to TA100 in the absence of S9 mix. PL-P was cytotoxic in in vitro chromosomal aberrations (more than a 50 % decrease in cell population doubling time), and it increased the frequency of structural and numerical aberrations in absence and presence of S9 mix in a concentration-dependent manner. PL-W was cytotoxic in the in vitro chromosomal aberration tests (more than a 50 % decrease in cell population doubling time) only in the absence of S9 mix, and it induced structural aberrations only in the presence of S9 mix. PL-P and PL-W did not produce toxic response during the in vivo micronucleus test after oral administration to ICR mice and did not induce positive results in the in vivo Pig-a gene mutation and comet assays after oral administration to SD rats. Although PL-P showed genotoxic in two in vitro tests, the results from physiologically relevant in vivo Pig-a gene mutation and comet assays illustrated that PL-P and PL-W does not cause genotoxic effects in rodents.


Asunto(s)
Aberraciones Cromosómicas , Paeonia , Extractos Vegetales , Animales , Ratones , Ratas , Daño del ADN , Escherichia coli , Ratones Endogámicos ICR , Paeonia/toxicidad , Ratas Sprague-Dawley , Extractos Vegetales/toxicidad , Raíces de Plantas/toxicidad , Salmonella typhimurium
3.
J Ethnopharmacol ; 305: 116012, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36567041

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Asarum heterotropoides var. seoulense (Nakai) Kitag is a traditional herbal medicine used in Korea and China. It is effective in aphthous stomatitis, local anesthesia, headache, toothache, gingivitis, and inflammatory diseases. However, information on the toxicity of the root of Asarum heterotropoides var. seoulense (Nakai) Kitag (AR) is limited. Therefore, preclinical toxicity studies on AR are needed to reduce the risk of excessive intake. AIM OF THE STUDY: We aimed to evaluate genotoxicity and the potential toxicity due to repeated administration of AR powder. MATERIALS AND METHODS: In vitro bacterial reverse mutation assay (Ames), in vitro chromosomal aberration assay (CA), and in vivo micronucleus (MN) assay in ICR mice were conducted. As positive results were obtained in Ames and CA assays, alkaline comet assay and pig-a gene mutation test were conducted for confirmation. For evaluating the general toxicity of AR powder, a 13-week subchronic toxicity test was conducted, after determining the dose by performing a single and a 4-week dose range finding (DRF) test. A total of 152 Sprague-Dawley (SD) rats were orally administered AR powder at doses of 0, 150, 350, 500, 1000, and 2000 mg/kg/day in the 13-week subchronic toxicity test. Hematology, clinical chemistry, urinalysis, organ weight, macro-, and microscopic examination were conducted after rat necropsy. RESULTS: AR powder induced genotoxicity evidenced in the Ames test at 187.5, 750, 375, and 1500 µg/plate of TA100, TA98, TA1537, and E. coli WP2uvrA in the presence and absence of S9, respectively; CA test at 790 µg/mL for 6 h in the presence of S-9; 75 µg/mL for 6 h in the absence of S-9, and 70 µg/mL for 22 h in the absence of S-9 in the stomach in the comet assay but not in MN and pig-a assays. In the 13-week subchronic toxicity study, clinical signs including irregular respiration, noisy respiration, salivation, and decreased body weight or food consumption were observed in males and females in the 2000 mg/kg/day group. In hematology tests, clinical chemistry, urinalysis, organ weight, and macroscopic examination, changes were observed in the dose groups of 500 mg/kg/day and above. Microscopic examination revealed hyperplasia of the stomach as a test-related change. Hepatocellular adenoma and changes in liver-related clinical chemistry parameters were observed. The rat No Observed Adverse Effect Level (NOAEL) was 150 mg/kg/day in males and <150 mg/kg/day in females. CONCLUSIONS: AR powder is potentially toxic to the liver and stomach and should be used with caution in humans. A long-term study on carcinogenicity is necessitated because DNA damage or changes in tissue lesions were observed in SD rats.


Asunto(s)
Asarum , Ratones , Humanos , Masculino , Femenino , Ratas , Animales , Ratas Sprague-Dawley , Pruebas de Mutagenicidad/métodos , Escherichia coli , Polvos , Ratones Endogámicos ICR , Daño del ADN , Aberraciones Cromosómicas/inducido químicamente
4.
Bioelectromagnetics ; 43(4): 218-224, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35476263

RESUMEN

Radiofrequency radiation (RFR) was classified as a "possible" human carcinogen in 2011, which caused great public concern. A carcinogenicity study by the National Toxicology Program (NTP) found Code Division Multiple Access-and Global System for Mobile Communications-modulated mobile phone RFR to be carcinogenic to the brain and heart of male rats. As part of an investigation of mobile phone carcinogenesis, and to verify the NTP study results, a 5-year collaborative animal project was started in Korea and Japan in 2019. An international animal study of this type has two prerequisites: use of the same study protocol and the same RF-exposure system. This article discusses our experience in the design of this global study on radiofrequency electromagnetic fields (RF-EMFs).© 2022 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Asunto(s)
Teléfono Celular , Ondas de Radio , Animales , Encéfalo , Carcinogénesis , Campos Electromagnéticos , Masculino , Ratas
5.
J Ethnopharmacol ; 275: 114138, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33895248

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Platycodon grandiflorus (Jacq.) A.DC. is a well-known traditional herbal medicine administered for bronchitis and inflammatory diseases. Especially, anti-inflammatory effect of fermented P. grandiflorus (Jacq.) A.DC. extract (FPGE) was higher than that of P. grandiflorus (Jacq.) A.DC. extract. However, toxicological information for FPGE is lacking. AIM OF THE STUDY: In this study, we establish a toxicological profile for FPGE by testing genotoxicity, acute and 13-week subchronic toxicity. MATERIALS AND METHODS: FPGE was evaluated with bacterial reverse mutation, chromosome aberration, and micronucleus test. For the acute- and 13-week subchronic toxicity tests, FPGE was administered orally at doses of 0, 750, 1500, and 3000 mg/kg in SD rats. RESULTS: The results of the genotoxic assays indicated that FPGE induced neither mutagenicity nor clastogenicity. The acute toxicity test showed that FPGE did not affect animal mortality, clinical signs, body weight changes, or microscopic findings at ≤ 3000 mg/kg. The approximate lethal dose (ALD) of FPGE in SD rats was >3000 mg/kg. For the 13-week subchronic toxicity assay, no FPGE dose induced any significant change in mortality, clinical signs, body or organ weight, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination in either SD rat sex. The rat no observed adverse effects level (NOAEL) for FPGE was set to 3000 mg/kg. CONCLUSIONS: The present study empirically demonstrated that FPGE has a safe preclinical profile and indicated that it could be safely integrated into health products for atopic dermatitis treatment.


Asunto(s)
Daño del ADN/efectos de los fármacos , Extractos Vegetales/toxicidad , Platycodon/química , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Aberraciones Cromosómicas/efectos de los fármacos , Cricetulus , Ingestión de Alimentos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Femenino , Fermentación , Riñón/efectos de los fármacos , Riñón/patología , Pulmón/efectos de los fármacos , Masculino , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Ratas Sprague-Dawley , Salmonella typhimurium/efectos de los fármacos , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subcrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA