Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Insects ; 12(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34442232

RESUMEN

Cordyceps, a parasitic complex of the fungus Ophiocordyceps sinensis (Berk.) (Hypocreales: Ophiocordycipitaceae) and the ghost moth Thitarodes (Lepidoptera: Hepialidae), is a historical ethnopharmacological commodity in China. Recently, artificial cultivation of Chinese cordyceps has been established to supplement the dwindling natural resources. However, much is unknown between the natural and cultivated products in terms of nutritional aspect, which may provide essential information for quality evaluation. The current study aims to determine the metabolic profiles of 17 treatments from 3 sample groups including O. sinensis fungus, Thitarodes insect and cordyceps complex, using Gas Chromatography - Quadrupole Time-of-Flight Mass Spectrometry. A total of 98 metabolites were detected, with 90 of them varying in concentrations among groups. The tested groups could be separated, except that fungal fruiting body was clustered into the same group as Chinese cordyceps. The main distinguishing factors for the groups studied were the 24 metabolites involved in numerous different metabolic pathways. In conclusion, metabolomics of O. sinensis and its related products were determined mainly by the fruiting bodies other than culture methods. Our results suggest that artificially cultured fruiting bodies and cordyceps may share indistinguishable metabolic functions as the natural ones.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34239584

RESUMEN

INTRODUCTION: Forsythin is the main ingredient of Forsythia suspensa and is widely used in treatment of fever, viral cold, gonorrhea, and ulcers clinically. This study aimed to evaluate the potential genetic toxicity of forsythin and its safety for human use. METHODS: Based on the Good Laboratory Practice regulations and test guidelines, the genetic toxicity of forsythin was assessed by the Ames test, chromosome aberration (CA) test, and bone marrow micronucleus (MN) test in vivo. In the Ames test, five strains of Salmonella typhimurium were exposed to different concentrations of forsythin in the presence or absence of the S9 mixture, and then, the number of His + revertant colonies was counted. In the CA test, Chinese hamster lung (CHL) fibroblast cells were treated with different concentrations of forsythin, mitomycin C, or cyclophosphamide in the presence or absence of the S9 mixture, and the chromosomal aberrations were determined. In the MN test, bone marrow was isolated from the mice with different treatments, and the ratios of polychromatic erythrocytes (PCE) and erythrocytes (PCE/(PCE + NCE)) were measured. Finally, beagle dogs were divided into four groups (negative control, low dose, medium dose, and high dose groups), and then, a telemetry system was used to evaluate the safe use of forsythin. RESULTS: Ames test results showed that the number of colonies in all test strains with different treatments showed no significantly dose-dependent increase in the presence or absence of the S9 mixture (p > 0.05). In the CA test, the number of cells with aberrations in the CHL fibroblast cells treated with low, medium, and high doses of forsythin for 24/48 h in the absence of the S9 mixture was, respectively, 5.0/2.5, 4.5/1.5, and 5.0/5.0, and in the presence of the S9 mixture, the number was, respectively, 5.0, 5.0, and 4.5. These results showed that there was no significant difference compared to the negative control group either in the presence (2.0) or in the absence (4.0/2.5 for 24/48 h) of the S9 mixture (p > 0.05). The MN test showed that the values of PCE/(PCE + NCE) in the negative, positive controls, and forsythin treatment groups were all more than 20%, which indicated that forsythin had no cytotoxicity. Additionally, no significant toxicological effects of forsythin on blood pressure, respiration, temperature, electrocardiogram, and other physiological indicators in the conscious beagle dogs of different groups were observed by the telemetry method. CONCLUSION: Our findings showed that forsythin has low probability of genetic toxicity and no significant toxicological effects, which implied that forsythin is suitable for further development and potential application.

3.
J Ethnopharmacol ; 277: 114215, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34033902

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypoxia will cause an increase in the rate of fatigue and aging. Chinese cordyceps, a parasitic Thitarodes insect-Ophiocordyceps sinensis fungus complex in the Qinghai-Tibet Plateau, has long been used to ameliorate human conditions associated with aging and senescence, it is principally applied to treat fatigue, night sweating and other symptoms related to aging, and it may play the anti-aging and anti-fatigue effect by improving the body's hypoxia tolerance. AIMS OF THE STUDY: The present study investigated the anti-hypoxia activity of Chinese cordyceps and explore the main corresponding signal pathways and bioactive compounds. MATERIALS AND METHODS: In this study, network pharmacology analysis, molecular docking, cell and whole pharmacodynamic experiments were hired to study the major signal pathways and the bioactive compounds of Chinese cordyceps for anti-hypoxia activity. RESULTS: 17 pathways which Chinese cordyceps acted on seemed to be related to the anti-hypoxia effect, and "VEGF signal pathway" was one of the most important pathway. Chinese cordyceps improved the survival rate and regulated the targets related VEGF signal pathway of H9C2 cells under hypoxia, and also had significant anti-hypoxia effects to mice. Chorioallantoic membrane model experiment showed that Chinese cordyceps and the main constituents of (9Z,12Z)-octadeca-9,12-dienoic acid and cerevisterol had significant angiogenic activity in hypoxia condition. CONCLUSION: Based on the results of network pharmacology and molecular docking analysis, cell and whole pharmacodynamic experiments, promoting angiogenesis by regulating VEGF signal pathway might be one of the mechanisms of anti-hypoxia effect of Chinese cordyceps, (9Z, 12Z)-octadeca-9,12-dienoic acid and cerevisterol were considered as the major anti-hypoxia bioactive compounds in Chinese cordyceps.


Asunto(s)
Cordyceps/química , Hipoxia/tratamiento farmacológico , Fitosteroles/farmacología , Animales , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Fitosteroles/aislamiento & purificación , Transducción de Señal/efectos de los fármacos
4.
Insects ; 12(4)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916889

RESUMEN

By employing a culture-dependent and -independent 16S rRNA and ITS gene high-throughput sequencing analyses, comprehensive information was obtained on the gut bacterial and fungal communities in the ghost moth larvae of three different geographic locations from high-altitude on Tibet plateau and from low-altitude laboratory. Twenty-six culturable bacterial species belonging to 21 genera and 14 fungal species belonging to 12 genera were identified from six populations by culture-dependent method. Carnobacterium maltaromaticum was the most abundant bacterial species from both the wild and laboratory-reared larvae. The most abundant OTUs in the wild ghost moth populations were Carnobacteriaceae, Enterobacteriaceae for bacteria, and Ascomycota and Basidiomycota for fungi. Larval microbial communities of the wild ghost moth from different geographic locations were not significantly different from each other but significant difference in larval microbial community was detected between the wild and laboratory-reared ghost moth. The larval gut of the wild ghost moth was dominated by the culturable Carnobacterium. However, that of the laboratory-reared ghost moth exhibited significantly abundant Wolbachia, Rhizobium, Serratia, Pseudomonas, and Flavobacterium. Furthermore, the larval gut of the wild ghost moth had a significantly higher abundance of Ophiocordyceps but lower abundance of Candida and Aspergillus than that of the laboratory-reared ghost moth.

5.
J Ethnopharmacol ; 268: 113600, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33220357

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese cordyceps, a parasitic Thitarodes insect-Ophiocordyceps sinensis fungus complex in the Qinghai-Tibet Plateau, is one of the most valuable traditional Chinese medicines and health food for ameliorating conditions associated with aging and for treating fatigue, night sweats, hyperglycemia, hyperlipidemia, respiratory, renal and liver diseases, and hyposexuality. The natural Chinese cordyceps resource is rare due to its harsh growing environment, limited geographical distribution and global climate warming. Artificial cultivation of Chinese cordyceps has been successfully established to meet its high demand in market. AIMS OF THE STUDY: The present study aims to evaluate the toxicological safety of the cultivated Chinese cordyceps and provide scientific data for subsequent development and utilization of this valuable biological resource. MATERIALS AND METHODS: The Chinese cordyceps was cultivated by mimicking the habitat environment in low-altitude areas and identified by morphological and microscopic characteristics. Its phytochemical profile was determined by the HPLC. Toxicological studies based on the cultivated Chinese cordyceps were conducted, including chromosomal aberration test of Chinese hamster lung (CHL) cells, Ames test, acute toxicity test and micronucleus (MN) test of bone marrow cells. RESULTS: The Chinese cordyceps successfully cultivated in low-altitude areas exhibited the same morphological and microscopic characteristics as natural Chinese cordyceps. The adenosine content was in accordance with the Chinese Pharmacopoeia (2015 Edition). The HPLC fingerprint was determined and five main chromatographic peaks representing uracil, uridine, inosine, guanosine and adenosine were identified. No dose-dependent increase in the rates of chromosomal aberration was detected in the presence or absence of metabolic activation system. Ames test also demonstrated no dose-dependent increase in the number of reversion mutation for five bacterial strains, with or without rat liver microsomal enzyme mixture (S9) metabolic activation, at a quantity range of 128-5000 µg cultivated Chinese cordyceps per plate. The acute toxicity test with mice showed that after 20 g/kg oral administration of cultivated Chinese cordyceps, neither animal death nor any abnormal change in general dissection of various tissues and organs of the animals were found within 14 days. The median lethal dose (LD50) was greater than 5 g/kg, which is regarded as a non-toxic level, and maximum tolerable dose (MTD) of cultivated Chinese cordyceps in ICR mice was more than 20 g/kg. MN test of mouse bone marrow cells indicated no significant differences among each sample dose and the negative control. CONCLUSION: Based on the results from four toxicological tests, it was concluded that the cultivated Chinese cordyceps was classified as non-toxic in one single administration at high doses by intragastric route in mice. This study provides scientific experimental basis for its safety.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Productos Biológicos/toxicidad , Cordyceps , Pruebas de Toxicidad Aguda/métodos , Administración Oral , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Cordyceps/aislamiento & purificación , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Ratones , Ratones Endogámicos ICR
6.
Int J Med Mushrooms ; 17(11): 1107-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26853966

RESUMEN

Ophiocordyceps sinensis (syn. Cordyceps sinensis), regarded as the "Himalayan Viagra", is widely used for medicinal treatment and health foods. The price of O. sinensis has continued to increase over the past few years because of the growing worldwide demand and resource limitations. Artificial cultivation of the fruiting bodies to substitute natural O. sinensis is urgently needed for the effective protection of a valuable bioresource and environment in the Tibetan plateau, and for commercial trade. In this study, the anamorph of 3 isolates was separated from natural O. sinensis and identified by molecular markers as Hirsutella sinensis. These fungal isolates were cultured in a rice-based medium at 9-13 °C for 50 days for mycelial growth, at 4 °C for 100 days for stromatal induction, and at 13 °C for 40 days for fruiting body formation. The mature fruiting bodies with mature perithecium were harvested in about 140 days. This is, to our knowledge, the first report of stable fruiting body production of O. sinensis by artificial media in the low-altitude area outside the Tibetan plateau.


Asunto(s)
Medios de Cultivo/metabolismo , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Hypocreales/crecimiento & desarrollo , Medios de Cultivo/química , Técnicas de Cultivo/instrumentación , Cuerpos Fructíferos de los Hongos/metabolismo , Hypocreales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA