Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 319(Pt 3): 117362, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380575

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Colorectal cancer (CRC) remains a significant global health concern, and targeting inflammation has emerged as a promising approach for its prevention and treatment. Medicinal plants and phytochemicals have garnered attention for their potential efficacy against inflammation with minimal toxicity. Osmanthus fragrans var. aurantiacus Makino (O. fragrans) has a history of traditional use in Korea and China in treating various inflammation-related conditions, but its potential use for CRC has not been uncovered. AIM OF THE STUDY: This study aims to explore the potential anti-proliferative and pro-apoptotic properties of O. fragrans, focusing on its impact on CRC treatment. By investigating O. fragrans, we aim to uncover its anti-proliferative and apoptotic effects in human CRC cells, potentially paving the way for effective and well-tolerated therapeutic strategies for CRC patients. MATERIALS AND METHODS: Ethanol (EtOH) extracts of O. fragrans leaf and flower, along with specific fractions (n-hexane, ethyl acetate (EtOAc), n-butanol, and the aqueous residue) were evaluated for their anti-proliferative effects in human CRC cells using MTT assays, and compared to normal colon cells. Mechanistic insights and chemical profiling were obtained through flow cytometry, colorimetric assays, western blotting, and molecular docking, and high-performance liquid chromatography (HPLC) system. RESULTS: Both flower and leaf EtOH extracts of O. fragrans exhibited significant anti-proliferative effects in human CRC cells, with the leaf extract demonstrating higher potency. The EtOAc fraction from the leaf extract displayed the strongest anti-CRC cell proliferative effects while no cytotoxic effects in normal colon cells. Chemical profiling of these fractions identified triterpenoids as significant components in the EtOAc fractions. The leaf EtOAc fraction caused cell cycle arrest and apoptosis, accompanied by elevating intracellular reactive oxygen species and mitochondrial dysfunction in CRC cells. Additionally, it inhibited NF-κB and ERK1/2 signaling, leading to reduced COX2 expression. Notably, two triterpenoids isolated from the leaf EtOAc fraction, maslinic acid and corosolic acid, displayed potent anti-cancer activity in CRC cells without affecting normal colon cells. Corosolic acid exhibited a strong binding affinity to COX2 and reduced its expression, supporting its role in the anti-inflammatory and anti-cancer effects. CONCLUSIONS: Our findings suggest that O. fragrans, particularly its triterpenoid-rich EtOAc fraction, holds promise as a novel therapeutic agent for CRC prevention and therapy. These results provide valuable insights into the potential application of O. fragrans and its bioactive compounds in combating CRC.


Asunto(s)
Acetatos , Neoplasias Colorrectales , Triterpenos , Humanos , FN-kappa B , Extractos Vegetales/uso terapéutico , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Triterpenos/farmacología , Triterpenos/uso terapéutico , Inflamación/tratamiento farmacológico , Etanol/farmacología , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico
2.
Nat Prod Res ; : 1-6, 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36800928

RESUMEN

The concern about the quality of medicinal herbs is becoming important due to the poor quality of commercial products like cosmetics, functional foods, and natural medicine produced from them. However, there is a lack of modern analytical methods to evaluate the constituents of P. macrophyllus until the moment. This paper reports an analytical method based on UHPLC-DAD and UHPLC-MS/MS MRM methods to evaluate the ethanolic extracts of P. macrophyllus leaves and twigs. 15 main constituents were identified using a UHPLC-DAD-ESI-MS/MS profiling. Subsequently, a reliable analytical method was established and successfully used to quantitate the constituent's content using four marker compounds in leaf and twig extracts of this plant. The result obtained from the current study demonstrated the secondary metabolites and the variety of their derivatives in this plant. The analytical method can help evaluate the quality of P. macrophyllus and develop high-value functional materials.

3.
Int Immunopharmacol ; 115: 109610, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36571918

RESUMEN

Ilex rotunda Thunb. has been used in traditional medicine for treating rheumatoid arthritis, relieving pain and indigestion. In the present study, we isolated three new caffeic acid benzyl ester (CABE) analogs (1-3) along with eight known compounds (4-11) from the extract of I. rotunda. The absolute configuration of α-hydoxycarboxylic acid in 1 was assigned with the phenylglycine methyl ester (PGME) method. We further investigated their anti-inflammatory activities in lipopolysaccharide (LPS)-induced macrophages (RAW 264.7) cells. Among them, compounds 2-4, 7, 8, 10, and 11 suppressed the production of nitric oxide (NO), pro-inflammatory mediators. It was additionally confirmed that the anti-inflammatory effect of active compound 2 was through significant suppression of cytokines, including interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α, and IL-8 in LPS-stimulated RAW 264.7 cells and colon epithelial (HT-29) cells. Western blot analysis revealed that compound 2 decreased the LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and phosphorylated extracellular regulated kinase (pERK)1/2. The following molecular docking simulations showed the significant interactions of compound 2 with the iNOS protein. These results suggested that the compound 2 can be used as potential candidate for treating inflammatory diseases such as inflammatory bowel disease (IBD).


Asunto(s)
Ilex , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Ilex/metabolismo , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células RAW 264.7 , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ciclooxigenasa 2/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499154

RESUMEN

Colorectal cancer (CRC) is an inflammation-associated common cancer worldwide. Paejang-san and Mori Cortex Radicis have been traditionally used for treating intestinal inflammatory diseases in Korea and China. In the present study, we developed a new herbal formula as an alternative to CRC treatments, which is composed of two main components of Paejangsan (Patriniae Radix (Paejang in Korean) and Coix Seed (Yiyiin in Korean)), and Mori Cortex Radicis (Sangbekpi in Korean) based on the addition and subtraction theory in traditional medicine, hence the name PSY, and explored the potential therapeutic effects of the new formula PSY in human CRC cells by analyzing viability, cell cycle and apoptosis. We found that PSY ethanol extract (EtOH-Ex), but not water extract, significantly suppressed the viability of human CRC cells, and synergistically decreased the cell proliferation compared to each treatment of Patriniae Radix and Coix Seed extract (PY) or Mori Cortex Radicis extract (S), suggesting the combination of PY and S in a 10-to-3 ratio for the formula PSY. PSY EtOH-Ex in the combination ratio reduced cell viability but induced cell cycle arrest at the G2/M and sub-G1 phases as well as apoptosis in CRC cells. In addition, the experimental results of Western blotting, immunofluorescence staining and reporter assays showed that PSY also inhibited STAT3 by reducing its phosphorylation and nuclear localization, which resulted in lowering STAT3-mediated transcriptional activation. In addition, PSY regulated upstream signaling molecules of STAT3 by inactivating JAK2 and Src and increasing SHP1. Moreover, the chemical profiles of PSY from UPLC-ESI-QTOF MS/MS analysis revealed 38 phytochemicals, including seven organic acids, eight iridoids, two lignans, twelve prenylflavonoids, eight fatty acids, and one carbohydrate. Furthermore, 21 potentially bioactive compounds were highly enriched in the PSY EtOH-Ex compared to the water extract. Together, these results indicate that PSY suppresses the proliferation of CRC cells by inhibiting the STAT3 signaling pathway, suggesting PSY as a potential therapeutic agent for treating CRC and 21 EtOH-Ex-enriched phytochemicals as anti-cancer drug candidates which may act by inhibiting STAT3.


Asunto(s)
Neoplasias Colorrectales , Espectrometría de Masas en Tándem , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Antineoplásicos Fitogénicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA