Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Anal Chem ; 2021: 6617033, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815504

RESUMEN

Licorice is a traditional Chinese medicine that has been used for a long time in China and still in great use today. The effect of licorice on tonifying spleen and invigorating qi has been proved for thousands of years, but the material basis of its effect is not clear. In this paper, we established the fingerprints of 21 batches of licorice collected from different origins in China with High-Performance Liquid Chromatography (HPLC) to identify the common peaks. Its effect of tonifying spleen and invigorating qi was confirmed through a series of praxiology experiments. The spectrum-effect relationship between HPLC fingerprints and its effect of tonifying spleen and invigorating qi of licorice was examined by gray relational analysis and partial least squares regression analysis. Results showed that the effect of licorice on tonifying spleen and invigorating qi resulted from various compounds and peaks. X 2-X 6 is presumed to be the main pharmacological substance base. This research successfully identified the spectrum-effect relationship between HPLC fingerprints and the effect of licorice on tonifying spleen and invigorating qi. The research method based on the spectrum-effect relationship helps provide new research ideas and strategies for the study of the basis of the medicinal materials and quality control of traditional Chinese medicine.

2.
J Ethnopharmacol ; 261: 113165, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32730875

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lycium barbarum polysaccharide (LBP) extracted from the Lycium barbarum L. has been widely used to improve diabetes and its relative complications. However, the mechanisms have not fully understood. A recent study has demonstrated that LBP upregulates suituin 1 (SIRT1). OBJECTIVE: This study was to define the role of Sirt1 and its downstream signaling pathways in diabetic cataract using in vitro and in vivo models. MATERIALS AND METHODS: Human lens epithelial cell line SRA01/04 cells were cultured under high glucose (HG) medium with treatment of LBP or vehicle. Cell viability, apoptosis, protein and/or mRNA levels of Sirt1, BAX, Bcl-2, active-caspase-3, FOXO1, p27 and acetylated p53 were measured. SIRT1 upregulated- and knocked-down cells were generated and tested in high glucose culture. Diabetes mellitus was induced in rats by streptozotocin injection. Body weight, blood glucose levels, lens transparency and retinal function were assessed and SIRT1, as well as the aforementioned biomarkers were measured using Western blotting and qPCR in the animal lens samples. RESULTS: The results showed that HG decreased cell viability and LBP prevented the decrease. The reduced viability in HG cultured SRA01/04 cells was associated with increased levels of BAX, active caspase 3, FOXO1, p27, and p53 and decreased levels of SIRT1 and Bcl-2. Further experiments using sirt1 gene modulated cells showed that upregulation of Sirt1 improved viability, increase cell division as reflected by an increased proportion of S phase in the cell cycle, reduced the number of apoptotic cell death and suppressed p53 acetylation and caspase 3 activation. Opposite results were observed in SIRT1 knock-down cells. Treating diabetic animals with LBP reduced body weight loss and blood glucose content in diabetic animals. Similarly, LBP hindered the development of cataract in lenses and improved retinal function. The beneficial effect of LBP on diabetic cataract was associated with the supression of p53, caspase 3, FOXO1, BAX, p27 and elevation of SIRT1 and Bcl-2, which were consistent with the in vitro findings. CONCLUSION: Our findings showed that diabetes caused cataract is associated with suppression of SIRT1 and Bcl-2 and activation of other cell death related genes. LBP prevented diabetic cataract in animals by upregulating Sirt1 and Bcl-2 and suppressing cell death related genes.


Asunto(s)
Catarata/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Células Epiteliales/efectos de los fármacos , Cristalino/efectos de los fármacos , Lycium , Sirtuina 1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Catarata/enzimología , Catarata/etiología , Catarata/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Medicamentos Herbarios Chinos/aislamiento & purificación , Células Epiteliales/enzimología , Células Epiteliales/patología , Humanos , Cristalino/enzimología , Cristalino/patología , Lycium/química , Masculino , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA