Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 316: 116727, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37277080

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Angelicae pubescentis radix (APR) has a long history in the treatment of rheumatoid arthritis (RA) in China. It has the effects of dispelling wind to eliminate dampness, removing arthralgia and stopping pain in the Chinese Pharmacopeia, but its mechanisms was remained unclear. Columbianadin (CBN), one of the main bioactive compounds of APR, has many pharmacological effects including anti-inflammatory and immunosuppression. However, there are few reports on therapeutic effect of CBN on RA. AIM OF THE STUDY: A comprehensive strategy via incorporating pharmacodynamics, microbiomics, metabolomics, and multiple molecular biological methods was adopted to evaluate the therapeutic effects of CBN on collagen-induced arthritis (CIA) mice and explore the potential mechanisms. MATERIALS AND METHODS: A variety of pharmacodynamic methods were used to evaluate the therapeutic effect of CBN on CIA mice. The microbial and metabolic characteristics of CBN anti-RA were obtained by metabolomics and 16S rRNA sequencing technology. The potential mechanism of CBN anti-RA was predicted through bioinformatics network analysis, and verified by a variety of molecular biology methods. RESULTS: CBN can effectively improved symptoms of rheumatoid arthritis in CIA mice, including paw swelling and arthritic scores. The inflammatory and oxidative stress were effectively regulated by the treatment of CBN. The fecal microbial communities and serum and urine metabolic compositions were significantly altered in CIA mice, CBN can ameliorate the CIA-associated gut microbiota dysbiosis, and regulate the disturbance of serum and urine metabolome. The acute toxicity test showed that the LD50 of CBN was greater than 2000 mg kg-1. CONCLUSIONS: CBN exert anti-RA effects from four perspectives: inhibiting inflammatory response, regulating oxidative stress, and improving changes in gut microbiota and metabolites. The JAK1/STAT3, NF-κB and Keap1/Nrf2 pathway may be important mechanism for CBN's inflammatory response and oxidative stress activity. CBN could be considered as a potential anti-RA drug for further study.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch , ARN Ribosómico 16S , Factor 2 Relacionado con NF-E2 , Inflamación/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Estrés Oxidativo , Colágeno
2.
J Ethnopharmacol ; 302(Pt A): 115923, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36375645

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginsenoside Rg1 (Rg1) is one of the main active components in Panax ginseng C. A. Meyer (ginseng), which has been widely used to delay senescence or improve health conditions for more than 2000 years. Increasing studies have revealed that Rg1 could regulate cell proliferation and differentiation, as well as anti-inflammatory and anti-apoptotic effects, and might have protective effects on many chronic kidney diseases. AIM OF THE STUDY: Diabetic nephropathy (DN) is one of the most dangerous microvascular complications of diabetes and is the leading cause of end-stage renal disease worldwide. However, the role and mechanism of Rg1 against high-glucose and high-fat-induced glomerular fibrosis in DN are not clear. This study aimed to investigate the protective effect of Rg1 on DN and its possible mechanism. MATERIALS AND METHODS: The type 2 diabetes mellitus (T2DM) mice models were established with a high-fat diet (HFD) combined with an intraperitoneal injection of streptozotocin (STZ). Urine protein and serum biochemical indexes were detected by corresponding kits. The kidney was stained with H&E, PAS, and Masson to observe the pathological morphology, glycogen deposition, and fibrosis. The expression of CD36 and p-PLC in the kidney cortex was detected by IHC. The expressions of FN and COL4 were detected by IF. Western blot and PCR were performed to examine protein and mRNA expressions of kidney fibrosis and TRPC6/NFAT2-related pathways in DN mice. Calcium imaging was used to examine the effect of Rg1 on [Ca2+]i in PA + HG-induced human mesangial cells (HMCs). Visualization of the interaction between Rg1 and CD36 was detected by molecular docking. RESULTS: Rg1 treatment for 8 weeks could prominently decrease urinary protein, serum creatinine, and urea nitrogen and downgrade blood lipid levels and renal lipid accumulation in T2DM mice. The pathological results indicated that Rg1 treatment attenuated renal pathological injury and glomerular fibrosis. The further results demonstrated that Rg1 treatment remarkably decreased the expressions of CD36, TRPC6, p-PLC, CN, NFAT2, TGF-ß, p-Smad2/3, COL4, and FN in renal tissues from T2DM mice. Calcium imaging results found that Rg1 downgraded the base levels of [Ca2+]i and ΔRatioF340/F380 after BAPTA and CaCl2 treatment. Molecular docking results showed that Rg1 could interact with CD36 with a good affinity. CONCLUSION: These results revealed that Rg1 could ameliorate renal lipid accumulation, pathological damage, and glomerular fibrosis in T2DM mice. The mechanism may be involved in reducing the overexpression of CD36 and inhibiting the TRPC6/NFAT2 signaling pathway in renal tissues of T2DM mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Animales , Humanos , Ratones , Calcio/metabolismo , Antígenos CD36/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/patología , Fibrosis , Riñón , Simulación del Acoplamiento Molecular , Transducción de Señal , Canal Catiónico TRPC6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA