RESUMEN
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
RESUMEN
The ligands BDA (2,2'-bipyridyl-6,6'-dicarboxylic acid) and PDA (1,10-phenanthroline-2,9-dicarboxylic acid) are of interest as functional group types for ion-exchange materials for extracting uranium from the oceans, reported in a previous paper for PDA Lashley, M. A. ( Inorg. Chem. 2016 55 10818 10829). Yang, Y. ( Inorg. Chem. 2019, 58, 6064 6074) have published what they claim to be a more accurate result for the formation of the UO22+/PDA complex of log K1 = 22.84 compared with our reported value of log K1 = 16.5, as well as log K1 = 21.52 for the BDA complex. The determination of log K1 for the PDA and BDA complexes with the UO22+ cation was carried out by Yang et al. using a competition reaction between DTPA (diethylenetriamine pentaacetic acid) and BDA or PDA, monitoring the absorbance due to the BDA and PDA ligands. This competition method using absorbance versus pH titrations was developed for determining the formation constants of the complexes of several polypyridyl ligands plus PDA complexes of metal ions, which were too stable for log K determination by competition with protons. A key feature of such titrations is that in the competition reaction, the displacement of the pyridyl donor ligand (e.g., PDA) by the competing ligand (e.g., DTPA), the absorbance spectrum of the displaced pyridyl donor ligand should be observed. Competing ligands used to date have been EDTA (ethylenediamine tetraacetic acid), DTPA, or the hydroxide ion. In the study of Yang et al., no such displaced PDA or BDA was apparent in the absorbance spectra in their titrations so that their reported log K1 values have no validity. Their log K1 values are so much higher than log K1 for the uranyl DTPA complex (â¼13.6) that DTPA could not possibly displace BDA or PDA from the uranyl cation, and a competition reaction could not possibly occur. We report the correct value of log K1 = 15.4 (ionic strength = zero) for the uranyl BDA complex, to illustrate the correct determination of such a constant by a competition reaction between BDA and hydroxide, showing how the characteristic absorbance spectrum for a BDA complex, here the UO22+ complex, disappears, and the distinctive absorbance spectrum of the free nonprotonated BDA ligand appears as the pH is increased, and BDA is displaced by the hydroxide ion.
Asunto(s)
2,2'-Dipiridil , Uranio , Cationes , Ligandos , Fenantrolinas , Uranio/químicaRESUMEN
Potato is a major global crop that has an important role to play in food security, reducing poverty and improving human nutrition. Productivity in potato however is limited in many environments by its sensitivity to abiotic stresses such as elevated temperature, drought, frost, and salinity. In this chapter we focus on the effects of elevated temperature on potato yields as high temperature is the most important uncontrollable factor affecting growth and yield of potato. We describe some of the physiological impacts of elevated temperature and review recent findings about response mechanisms. We describe genetic approaches that could be used to identify allelic variants of genes that may be useful to breed for increased climate resilience, an approach that could be deployed with recent advances in potato breeding.
Asunto(s)
Solanum tuberosum , Sequías , Calor , Salinidad , Solanum tuberosum/genética , Estrés FisiológicoRESUMEN
BACKGROUND: Phosphorus (P) deficiency limits crop production worldwide. Crops differ in their ability to acquire and utilise the P available. The aim of this study was to determine root traits (root exudates, root system architecture (RSA), tissue-specific allocation of P, and gene expression in roots) that (a) play a role in P-use efficiency and (b) contribute to large shoot zinc (Zn) concentration in Brassica oleracea. RESULTS: Two B. oleracea accessions (var. sabellica C6, a kale, and var. italica F103, a broccoli) were grown in a hydroponic system or in a high-throughput-root phenotyping (HTRP) system where they received Low P (0.025 mM) or High P (0.25 mM) supply for 2 weeks. In hydroponics, root and shoot P and Zn concentrations were measured, root exudates were profiled using both Fourier-Transform-Infrared spectroscopy and gas-chromatography-mass spectrometry and previously published RNAseq data from roots was re-examined. In HTRP experiments, RSA (main and lateral root number and lateral root length) was assessed and the tissue-specific distribution of P was determined using micro-particle-induced-X-ray emission. The C6 accession had greater root and shoot biomass than the F103 accession, but the latter had a larger shoot P concentration than the C6 accession, regardless of the P supply in the hydroponic system. The F103 accession had a larger shoot Zn concentration than the C6 accession in the High P treatment. Although the F103 accession had a larger number of lateral roots, which were also longer than in the C6 accession, the C6 accession released a larger quantity and number of polar compounds than the F103 accession. A larger number of P-responsive genes were found in the Low P treatment in roots of the F103 accession than in roots of the C6 accession. Expression of genes linked with "phosphate starvation" was up-regulated, while those linked with iron homeostasis were down-regulated in the Low P treatment. CONCLUSIONS: The results illustrate large within-species variability in root acclimatory responses to P supply in the composition of root exudates, RSA and gene expression, but not in P distribution in root cross sections, enabling P sufficiency in the two B. oleracea accessions studied.
Asunto(s)
Brassica/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Hidroponía , Metaboloma , Brotes de la PlantaRESUMEN
INTRODUCTION: Commercially, blackcurrants (Ribes nigrum L.) are grown mainly for processing, especially for juice production. They are valued for their high levels of polyphenols, especially anthocyanins, which contribute to their characteristic deep colour, but also as a good source of vitamin C. Recently, evidence has accrued that polyphenols, such as anthocyanins, may have specific human health benefits. OBJECTIVE: The aims of this study were to investigate the genetic control of polyphenols and other key juice processing traits in blackcurrants. METHODS: The levels, over 2 years, of vitamin C, citrate, malate, succinate, total organic acids, total anthocyanins and total phenolics together with 46 mainly polyphenol metabolites were measured in a blackcurrant biparental mapping population. Quantitative trait loci (QTLs) for these traits were mapped onto a high-density SNP linkage map. RESULTS: At least one QTL was detected for each trait, with good consistency between the 2 years. Clusters of QTLs were found on each of the eight linkage groups (LG). For example, QTLs for the major anthocyanidin glucosides, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, co-localised with a QTL for total anthocyanin content on LG3 whereas the major anthocyanidin rutinosides, delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, had QTLs on LG1 and LG2. Many of the QTLs explained a high proportion of the trait variation, with the most significant region, on LG3 at ~ 35 cM, explaining more than 60% of the variation in the coumaroylated metabolites, Cyanidin-coumaroyl-glucose, Delphinidin-coumaroyl-glucose, Kaempferol-coumaroyl-glucose and Myricetin-coumaroyl-glucose. CONCLUSION: The identification of robust QTLs for key polyphenol classes and individual polyphenols in blackcurrant provides great potential for marker-assisted breeding for improved levels of key components.
Asunto(s)
Polifenoles/genética , Polifenoles/metabolismo , Sitios de Carácter Cuantitativo/genética , Ribes/genética , Ribes/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismoRESUMEN
MAIN CONCLUSION: A powerful acquired thermotolerance response in potato was demonstrated and characterised in detail, showing the time course required for tolerance, the reversibility of the process and requirement for light. Potato is particularly vulnerable to increased temperature, considered to be the most important uncontrollable factor affecting growth and yield of this globally significant crop. Here, we describe an acquired thermotolerance response in potato, whereby treatment at a mildly elevated temperature primes the plant for more severe heat stress. We define the time course for acquiring thermotolerance and demonstrate that light is essential for the process. In all four commercial tetraploid cultivars that were tested, acquisition of thermotolerance by priming was required for tolerance at elevated temperature. Accessions from several wild-type species and diploid genotypes did not require priming for heat tolerance under the test conditions employed, suggesting that useful variation for this trait exists. Physiological, transcriptomic and metabolomic approaches were employed to elucidate potential mechanisms that underpin the acquisition of heat tolerance. This analysis indicated a role for cell wall modification, auxin and ethylene signalling, and chromatin remodelling in acclimatory priming resulting in reduced metabolic perturbation and delayed stress responses in acclimated plants following transfer to 40 °C.
Asunto(s)
Respuesta al Choque Térmico , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiología , Termotolerancia , Pared Celular/metabolismo , Ensamble y Desensamble de Cromatina , Electrólitos/metabolismo , Etilenos/metabolismo , Perfilación de la Expresión Génica , Genotipo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/efectos de la radiación , Calor , Ácidos Indolacéticos/metabolismo , Metabolómica , Oxidación-Reducción , Fenotipo , Proteínas de Plantas/genética , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Solanum tuberosum/genética , Solanum tuberosum/efectos de la radiación , Termotolerancia/genética , Termotolerancia/efectos de la radiaciónRESUMEN
For many commercial potato cultivars, tuber yield is optimal at average daytime temperatures in the range of 14-22 °C. Further rises in ambient temperature can reduce or completely inhibit potato tuber production, with damaging consequences for both producer and consumer. The aim of this study was to use a genetic screen based on a model tuberization assay to identify quantitative trait loci (QTL) associated with enhanced tuber yield. A candidate gene encoding HSc70 was identified within one of the three QTL intervals associated with elevated yield in a Phureja-Tuberosum hybrid diploid potato population (06H1). A particular HSc70 allelic variant was linked to elevated yield in the 06H1 progeny. Expression of this allelic variant was much higher than other alleles, particularly on exposure to moderately elevated temperature. Transient expression of this allele in Nicotiana benthamiana resulted in significantly enhanced tolerance to elevated temperature. An TA repeat element was present in the promoter of this allele, but not in other HSc70 alleles identified in the population. Expression of the HSc70 allelic variant under its native promoter in the potato cultivar Desiree resulted in enhanced HSc70 expression at elevated temperature. This was reflected in greater tolerance to heat stress as determined by improved yield under moderately elevated temperature in a model nodal cutting tuberization system and in plants grown from stem cuttings. Our results identify HSc70 expression level as a significant factor influencing yield stability under moderately elevated temperature and identify specific allelic variants of HSc70 for the induction of thermotolerance via conventional introgression or molecular breeding approaches.
Asunto(s)
Respuesta al Choque Térmico/fisiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Alelos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Respuesta al Choque Térmico/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Solanum tuberosum/genética , TemperaturaRESUMEN
Recent advances have defined some of the components of photoperiodic signalling that lead to tuberization in potato including orthologues of FLOWERING LOCUS T (StSP6A) and CYCLING DOF FACTOR (StCDF1). The aim of the current study is to investigate the molecular basis of permissive tuber initiation under long days in Solanum tuberosumâ Neo-Tuberosum by comparative analysis with an obligate short-day S. tuberosum ssp. Andigena accession. We show that the Neo-Tuberosum accession, but not the Andigena, contains alleles that encode StCDF1 proteins modified in the C-terminal region, likely to evade long day inhibition of StSP6A expression. We also identify an allele of StSP6A from the Neo-Tuberosum accession, absent in the Andigena, which is expressed under long days. Other leaf transcripts and metabolites that show different abundances in tuberizing and non-tuberizing samples were identified adding detail to tuberization-associated processes. Overall, the data presented in this study highlight the subtle interplay between components of the clock-CONSTANS-StSP6A axis which collectively may interact to fine-tune the timing of tuberization.
Asunto(s)
Fotoperiodo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Secuencia de Aminoácidos , Genotipo , Metaboloma , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Polimorfismo Genético , Alineación de Secuencia , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrolloRESUMEN
Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady-state response to the mild heat stress encountered in temperate agriculture. In the present work, we therefore exposed tuberizing potato plants to mildly elevated temperatures (30/20 °C, day/night) for up to 5 weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16 °C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberization signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals.
Asunto(s)
Respuesta al Choque Térmico , Solanum tuberosum/metabolismo , Temperatura , Empalme Alternativo , Carbono/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oxidación-Reducción , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiologíaRESUMEN
Some metal ion complexing properties of DPP (2,9-Di(pyrid-2-yl)-1,10-phenanthroline) are reported with a variety of Ln(III) (Lanthanide(III)) ions and alkali earth metal ions, as well as the uranyl(VI) cation. The intense π-π* transitions in the absorption spectra of aqueous solutions of 10(-5) M DPP were monitored as a function of pH and metal ion concentration to determine formation constants of the alkali-earth metal ions and Ln(III) (Ln = lanthanide) ions. It was found that log K(1)(DPP) for the Ln(III) ions has a peak at Ln(III) = Sm(III) in a plot of log K(1) versus 1/r(+) (r(+) = ionic radius for 8-coordination). For Ln(III) ions larger than Sm(III), there is a steady rise in log K(1) from La(III) to Sm(III), while for Ln(III) ions smaller than Sm(III), log K(1) decreases slightly to the smallest Ln(III) ion, Lu(III). This pattern of variation of log K(1) with varying size of Ln(III) ion was analyzed using MM (molecular mechanics) and DFT (density functional theory) calculations. Values of strain energy (∑U) were calculated for the [Ln(DPP)(H(2)O)(5)](3+) and [Ln(qpy)(H(2)O)(5)](3+) (qpy = quaterpyrdine) complexes of all the Ln(III) ions. The ideal M-N bond lengths used for the Ln(III) ions were the average of those found in the CSD (Cambridge Structural Database) for the complexes of each of the Ln(III) ions with polypyridyl ligands. Similarly, the ideal M-O bond lengths were those for complexes of the Ln(III) ions with coordinated aqua ligands in the CSD. The MM calculations suggested that in a plot of ∑U versus ideal M-N length, a minimum in ∑U occurred at Pm(III), adjacent in the series to Sm(III). The significance of this result is that (1) MM calculations suggest that a similar metal ion size preference will occur for all polypyridyl-type ligands, including those containing triazine groups, that are being developed as solvent extractants in the separation of Am(III) and Ln(III) ions in the treatment of nuclear waste, and (2) Am(III) is very close in M-N bond lengths to Pm(III), so that an important aspect of the selectivity of polypyridyl type ligands for Am(III) will depend on the above metal ion size-based selectivity. The selectivity patterns of DPP with the alkali-earth metal ions shows a similar preference for Ca(II), which has the most appropriate M-N lengths. The structures of DPP complexes of Zn(II) and Bi(III), as representative of a small and of a large metal ion respectively, are reported. [Zn(DPP)(2)](ClO(4))(2) (triclinic, P1, R = 0.0507) has a six-coordinate Zn(II), with each of the two DPP ligands having one noncoordinated pyridyl group appearing to be π-stacked on the central aromatic ring of the other DPP ligand. [Bi(DPP)(H(2)O)(2)(ClO(4))(2)](ClO(4)) (triclinic, P1, R = 0.0709) has an eight-coordinate Bi, with the coordination sphere composed of the four N donors of the DPP ligand, two coordinated water molecules, and the O donors of two unidentate perchlorates. As is usually the case with Bi(III), there is a gap in the coordination sphere that appears to be the position of a lone pair of electrons on the other side of the Bi from the DPP ligand. The Bi-L bonds become relatively longer as one moves from the side of the Bi containg the DPP to the side where the lone pair is thought to be situated. A DFT analysis of [Ln(tpy)(H(2)O)(n)](3+) and [Ln(DPP)(H(2)O)(5)](3+) complexes is reported. The structures predicted by DFT are shown to match very well with the literature crystal structures for the [Ln(tpy)(H(2)O)(n)](3+) with Ln = La and n = 6, and Ln = Lu with n = 5. This then gives one confidence that the structures for the DPP complexes generated by DFT are accurate. The structures generated by DFT for the [Ln(DPP)(H(2)O)(5)](3+) complexes are shown to agree very well with those generated by MM, giving one confidence in the accuracy of the latter. An analysis of the DFT and MM structures shows the decreasing O--O nonbonded distances as one progresses from La to Lu, with these distances being much less than the sum of the van der Waals radii for the smaller Ln(III) ions. The effect that such short O--O nonbonded distances has on thermodynamic complex stability and coordination number is then discussed.
Asunto(s)
Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/química , Fenantrolinas/química , Uranio/química , Iones/química , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Teoría Cuántica , Soluciones , Agua/químicaRESUMEN
The peach-potato aphid (Myzus persicae Sulzer) is a major pest of potato (Solanum tuberosum L.) but the molecular characterization of this interaction particularly with regard to oxidants and antioxidants remains to be undertaken. Aphid colonies reared on potato leaves containing high ascorbate were twice the size of those grown on leaves with low ascorbate. Infestation-dependent decreases in the abundance of key transcripts such as chloroplastic FeSOD, peroxisomal catalase 2, PR1 and JAZ1 preceded detectable leaf H(2)O(2) or polyphenol accumulation. The leaf glutathione pool was increased 48 h after infestation, but the amount of ascorbate was unchanged. The ascorbate/dehydroacorbate (DHA) ratio was lower at 48 h but the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unchanged. While DHA reductase and GSSG reductase activities were unaffected by aphid feeding, non-specific peroxidase activities were enhanced 48 h following aphid infestation. Brown ethanol-insoluble deposits were observed close to leaf veins following aphid infestation. Taken together, the results demonstrate that high ascorbate favours aphid colony expansion and that perturbations in the leaf antioxidant system are intrinsic to the potato leaf response to aphids. Moreover, these changes together with the induction of hormone-related transcripts precede the deposition of defence-associated oxidized polyphenols along the stylet track.
Asunto(s)
Áfidos/fisiología , Ácido Ascórbico/metabolismo , Enfermedades de las Plantas/parasitología , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/fisiología , Animales , Antioxidantes/metabolismo , Áfidos/efectos de los fármacos , Ácido Ascórbico/análisis , Glutatión/análisis , Glutatión/metabolismo , Herbivoria , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas/genética , Inmunidad de la Planta , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/parasitología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polifenoles/análisis , Polifenoles/metabolismo , Prunus/parasitología , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Factores de TiempoRESUMEN
Although processed potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase (PME) activity as a potential factor impacting on textural properties, and the expression of a gene encoding an isoform of PME (PEST1) was associated with cooked tuber textural properties. In this study, a transgenic approach was undertaken to investigate further the impact of the PEST1 gene. Antisense and over-expressing potato lines were generated. In over-expressing lines, tuber PME activity was enhanced by up to 2.3-fold; whereas in antisense lines, PME activity was decreased by up to 62%. PME isoform analysis indicated that the PEST1 gene encoded one isoform of PME. Analysis of cell walls from tubers from the over-expressing lines indicated that the changes in PME activity resulted in a decrease in pectin methylation. Analysis of processed tuber texture demonstrated that the reduced level of pectin methylation in the over-expressing transgenic lines was associated with a firmer processed texture. Thus, there is a clear link between PME activity, pectin methylation and processed tuber textural properties.
Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Regulación Enzimológica de la Expresión Génica , Ingeniería Genética/métodos , Tubérculos de la Planta/fisiología , Solanum tuberosum/genética , Agrobacterium tumefaciens/genética , Hidrolasas de Éster Carboxílico/genética , Pared Celular/metabolismo , Activación Enzimática , Manipulación de Alimentos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Vectores Genéticos/genética , Isoenzimas/metabolismo , Metilación , Análisis de Secuencia por Matrices de Oligonucleótidos , Pectinas/genética , Pectinas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , TransgenesRESUMEN
Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties.
Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Manipulación de Alimentos , Pectinas/química , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/enzimología , Solanum tuberosum/enzimología , Hidrolasas de Éster Carboxílico/genética , Pectinas/metabolismo , Proteínas de Plantas/genética , Tubérculos de la Planta/química , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Solanum tuberosum/química , Solanum tuberosum/genética , Solanum tuberosum/metabolismoRESUMEN
Anthocyanin content of potato tubers is a trait that is attracting increasing attention as the potential nutritional benefits of this class of compound become apparent. However, our understanding of potato tuber anthocyanin accumulation is not complete. The aim of this study was to use a potato microarray to investigate gene expression patterns associated with the accumulation of purple tuber anthocyanins. The advanced potato selections, CO97216-3P/PW and CO97227-2P/PW, developed by conventional breeding procedures, produced tubers with incomplete expression of tuber flesh pigmentation. This feature permits sampling pigmented and non-pigmented tissues from the same tubers, in essence, isolating the factors responsible for pigmentation from confounding genetic, environmental, and developmental effects. An examination of the transcriptome, coupled with metabolite data from purple pigmented sectors and from non-pigmented sectors of the same tuber, was undertaken to identify these genes whose expression correlated with elevated or altered polyphenol composition. Combined with a similar study using eight other conventional cultivars and advanced selections with different pigmentation, it was possible to produce a refined list of only 27 genes that were consistently differentially expressed in purple tuber tissues compared with white. Within this list are several new candidate genes that are likely to impact on tuber anthocyanin accumulation, including a gene encoding a novel single domain MYB transcription factor.
Asunto(s)
Antocianinas/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum tuberosum/metabolismo , Flavonoides/biosíntesis , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Solanum tuberosum/genéticaRESUMEN
To gain greater insight into the mechanism of dormancy release in the potato tuber, an investigation into physiological and biochemical changes in tuber and bud tissues during the transition from bud dormancy (immediately after harvest) to active bud growth was undertaken. Within the tuber, a rapid shift from storage metabolism (starch synthesis) to reserve mobilization within days of detachment from the mother plant suggested transition from sink to source. Over the same period, a shift in the pattern of [U-(14)C]sucrose uptake by tuber discs from diffuse to punctate accumulation was consistent with a transition from phloem unloading to phloem loading within the tuber parenchyma. There were no gross differences in metabolic capacity between resting and actively growing tuber buds as determined by [U-(14)C]glucose labelling. However, marked differences in metabolite pools were observed with large increases in starch and sucrose, and the accumulation of several organic acids in growing buds. Carboxyfluorescein labelling of tubers clearly demonstrated strong symplastic connection in actively growing buds and symplastic isolation in resting buds. It is proposed that potato tubers rapidly undergo metabolic transitions consistent with bud outgrowth; however, growth is initially prevented by substrate limitation mediated via symplastic isolation.
Asunto(s)
Plasmodesmos/fisiología , Solanum tuberosum/crecimiento & desarrollo , Transporte Biológico , Difusión , Fluoresceínas/análisis , Fluoresceínas/metabolismo , Floema/metabolismo , Solanum tuberosum/citología , Solanum tuberosum/metabolismo , Almidón/metabolismo , Sacarosa/metabolismoRESUMEN
Potato plants (Solanum tuberosum L. cvs Desiree and Record) transformed with sense and antisense constructs of a cDNA encoding the potato fructokinase StFK1 exhibited altered transcription of this gene, altered amount of protein and altered enzyme activities. Measurement of the maximal catalytic activity of fructokinase revealed a 2-fold variation in leaf (from 90 to 180% of wild type activity) and either a 10- or 30-fold variation in tuber (from 10 or 30% to 300% in Record and Desiree, respectively) activity. The comparative effect of the antisense construct in leaf and tuber tissue suggests that this isoform is only a minor contributor to the total fructokinase activity in the leaf but the predominant isoform in the tuber. Antisense inhibition of the fructokinase resulted in a reduced tuber yield; however, its overexpression had no impact on this parameter. The modulation of fructokinase activity had few, consistent effects on carbohydrate levels, with the exception of a general increase in glucose content in the antisense lines, suggesting that this enzyme is not important for the control of starch synthesis. However, when metabolic fluxes were estimated, it became apparent that the transgenic lines display a marked shift in metabolism, with the rate of redistribution of radiolabel to sucrose markedly affected by the activity of fructokinase. These data suggest an important role for fructokinase, acting in concert with sucrose synthase, in maintaining a balance between sucrose synthesis and degradation by a mechanism independent of that controlled by the hexose phosphate-mediated activation of sucrose phosphate synthase.
Asunto(s)
Fructoquinasas/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Metabolismo de los Hidratos de Carbono , Fructoquinasas/genética , Fenotipo , Hojas de la Planta/metabolismo , Tubérculos de la Planta/enzimología , Plantas Modificadas Genéticamente , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Transcripción GenéticaRESUMEN
BACKGROUND: Following on from recent advances in plant AsA biosynthesis there is increasing interest in elucidating the factors contributing to the L-ascorbic acid (AsA) content of edible crops. One main objective is to establish whether in sink organs such as fruits and tubers, AsA is synthesised in situ from imported photoassimilates or synthesised in source tissues and translocated via the phloem. In the current work we test the hypothesis that long-distance transport is involved in AsA accumulation within the potato tuber, the most significant source of AsA in the European diet. RESULTS: Using the EDTA exudation technique we confirm the presence of AsA in the phloem of potato plants and demonstrate a correlation between changes in the AsA content of source leaves and that of phloem exudates. Comparison of carboxyflourescein and AgNO3 staining is suggestive of symplastic unloading of AsA in developing tubers. This hypothesis was further supported by the changes in AsA distribution during tuber development which closely resembled those of imported photoassimilates. Manipulation of leaf AsA content by supply of precursors to source leaves resulted in increased AsA content of developing tubers. CONCLUSION: Our data provide strong support to the hypothesis that long-distance transport of AsA occurs in potato. We also show that phloem AsA content and AsA accumulation in sink organs can be directly increased via manipulation of AsA content in the foliage. We are now attempting to establish the quantitative contribution of imported AsA to overall AsA accumulation in developing potato tubers via transgenic approaches.
Asunto(s)
Ácido Ascórbico/metabolismo , Solanum tuberosum/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/biosíntesis , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Cromatografía Líquida de Alta Presión , Fluoresceínas/metabolismo , Galactosa/metabolismo , Galactosa/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Luz , Microscopía Confocal , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Estructuras de las Plantas/química , Estructuras de las Plantas/metabolismo , Tinción con Nitrato de Plata/métodos , Solanum tuberosum/química , Azúcares Ácidos/metabolismo , Azúcares Ácidos/farmacologíaRESUMEN
BACKGROUND: Although plants are the main source of vitamin C in the human diet, we still have a limited understanding of how plants synthesise L-ascorbic acid (AsA) and what regulates its concentration in different plant tissues. In particular, the enormous variability in the vitamin C content of storage organs from different plants remains unexplained. Possible sources of AsA in plant storage organs include in situ synthesis and long-distance transport of AsA synthesised in other tissues via the phloem. In this paper we examine a third possibility, that of synthesis within the phloem. RESULTS: We provide evidence for the presence of AsA in the phloem sap of a wide range of crop species using aphid stylectomy and histochemical approaches. The activity of almost all the enzymes of the primary AsA biosynthetic pathway were detected in phloem-rich vascular exudates from Cucurbita pepo fruits and AsA biosynthesis was demonstrated in isolated phloem strands from Apium graveolens petioles incubated with a range of precursors (D-glucose, D-mannose, L-galactose and L-galactono-1,4-lactone). Phloem uptake of D-[U-14C]mannose and L-[1-14C]galactose (intermediates of the AsA biosynthetic pathway) as well as L-[1-14C]AsA and L-[1-14C]DHA, was observed in Nicotiana benthamiana leaf discs. CONCLUSIONS: We present the novel finding that active AsA biosynthesis occurs in the phloem. This process must now be considered in the context of mechanisms implicated in whole plant AsA distribution. This work should provoke studies aimed at elucidation of the in vivo substrates for phloem AsA biosynthesis and its contribution to AsA accumulation in plant storage organs.