Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 39(29): 10088-10097, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37432189

RESUMEN

The purification and collection of various products from oil/water mixtures are routine procedures. However, the presence of emulsifiers that can displace other surface active components in the mixtures can significantly influence the efficiency of such procedures. Previously, we investigated interfacial mechanisms of zein protein-induced emulsification and the opposing surfactant-induced demulsification related to corn oil refinement. In this paper, we further investigated a different class of protein, glutelin, inside corn and proved that glutelin acts as an oil/water emulsifier in an acidic water environment. Furthermore, an extended surfactant's protein disordering and removal ability was tested and compared with a conventional surfactant. An extended surfactant contains a poly(propylene oxide) or poly(propylene oxide)-poly(ethylene oxide) chain inserted between the hydrophilic head and the hydrophobic tail. In this study, a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibration spectroscopy, was used to study the behavior of glutelin and extended as well as regular surfactants at the corn oil/water or aqueous solution interface. In most cases, the conventional surfactant shows better protein disordering or removal ability than the extended surfactant. However, with the addition of heat and salt to an extended surfactant solution, the experiment resulted in a substantial increase in the extended surfactant's protein disorder or removal ability.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Tensoactivos/química , Aceite de Maíz , Zea mays , Glútenes , Emulsionantes/química , Lipoproteínas
2.
Langmuir ; 36(15): 4044-4054, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32212710

RESUMEN

Purification and collection of industrial products from oil-water mixtures are commonly implemented processes. However, the efficiencies of such processes can be severely influenced by the presence of emulsifiers that induce the formation of small oil droplets dispersed in the mixtures. Understanding of this emulsifying effect and its counteractions which occur at the oil/water interface is therefore necessary for the improvement of designs of these processes. In this paper, we investigated the interfacial mechanisms of protein-induced emulsification and the opposing surfactant-induced demulsification related to corn oil refinement. At corn oil/water interfaces, the pH-dependent emulsifying function of zein protein, which is the major storage protein of corn, was elucidated by the surface/interface-sensitive sum frequency generation (SFG) vibrational spectroscopy technique. The effective stabilization of corn oil droplets by zein protein was illustrated and correlated to its ordered amide I group at the oil/water interface. Substantial decrease of this ordering with the addition of three industrial surfactants to corn oil-zein solution mixtures was also observed using SFG, which explains the surfactant-induced destabilization and coalescence of small oil droplets. Surfactant-protein interaction was then demonstrated to be the driving force for the disordering of interfacial proteins, either by disrupting protein layers or partially excluding protein molecules from the interface. The ordered zein proteins at the interface were therefore revealed to be the critical factor for the formation of corn oil-water emulsion.


Asunto(s)
Aceite de Maíz , Tensoactivos , Emulsiones , Agua , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA