Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Tradit Complement Med ; 12(2): 162-171, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35528471

RESUMEN

Background and aim: Tuberculosis (TBC) is a deadly disease and major health issue in the world. Emergence of drug resistant strains further worsens the efficiency of available anti-TBC drugs. Natural compounds and particularly traditional medicines such as Unani drugs are one of the promising alternatives that have been widely used nowadays. This study aims to evaluate the efficacy of unani drug Qurs-e-Sartan Kafoori (QSK) on Mycobacterium tuberculosis (MTB). Experimental procedures: Drug susceptibilities were estimated by broth microdilution assay. Cell surface integrity was assessed by ZN staining, colony morphology and nitrocefin hydrolysis. Biofilms were visualized by crystal violet staining and measurement of metabolic activity and biomass. Lipidomics analysis was performed using mass spectrometry. Host pathogen interaction studies were accomplished using THP-1 cell lines to estimate cytokines by ELISA kit, apoptosis and ROS by flow cytometry. Results: QSK enhanced the susceptibilities of isoniazid and rifampicin and impaired membrane homeostasis as depicted by altered cell surface properties and enhanced membrane permeability. In addition, virulence factor, biofilm formation was considerably reduced in presence of QSK. Lipidomic analysis revealed extensive lipid remodeling. Furthermore, we used a THP-1 cell line model, and investigated the immunomodulatory effect by estimating cytokine profile and found change in expressions of TNF-α, IL-6 and IL-10. Additionally, we uncover reduced THP-1 apoptosis and enhanced ROS production in presence of QSK. Conclusion: Together, this study validates the potential of unani formulation (QSK) with its mechanism of action and attempts to highlight its significance in MDR reversal.

2.
Pathogens ; 10(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572162

RESUMEN

Human fungal pathogens particularly of Candida species are one of the major causes of hospital acquired infections in immunocompromised patients. The limited arsenal of antifungal drugs to treat Candida infections with concomitant evolution of multidrug resistant strains further complicates the management of these infections. Therefore, deployment of novel strategies to surmount the Candida infections requires immediate attention. The human body is a dynamic ecosystem having microbiota usually involving symbionts that benefit from the host, but in turn may act as commensal organisms or affect positively (mutualism) or negatively (pathogenic) the physiology and nourishment of the host. The composition of human microbiota has garnered a lot of recent attention, and despite the common occurrence of Candida spp. within the microbiota, there is still an incomplete picture of relationships between Candida spp. and other microorganism, as well as how such associations are governed. These relationships could be important to have a more holistic understanding of the human microbiota and its connection to Candida infections. Understanding the mechanisms behind commensalism and pathogenesis is vital for the development of efficient therapeutic strategies for these Candida infections. The concept of host-microbiota crosstalk plays critical roles in human health and microbiota dysbiosis and is responsible for various pathologies. Through this review, we attempted to analyze the types of human microbiota and provide an update on the current understanding in the context of health and Candida infections. The information in this article will help as a resource for development of targeted microbial therapies such as pre-/pro-biotics and microbiota transplant that has gained advantage in recent times over antibiotics and established as novel therapeutic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA