Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytochemistry ; 203: 113355, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948139

RESUMEN

Ginkgolides are the most important bioactive components of Ginkgo biloba L, of which ginkgolide B has been successfully developed and marketed as a drug. The reported ginkgolides are very rare and exhibit a complex matrix due to the chemodiversity of Ginkgo biloba L. Herein, the global profile of characteristic ion and neutral loss recognition strategy were used for to discover eight undescribed ginkgolides, very rare cyclohexane ginkgolides R-V, ginkgolides D-F, and eight known ginkgolides. These ginkgolides were target isolated and identified using high-resolution mass spectrometry, nuclear magnetic resonance spectroscopy, and X-ray crystallography. The undescribed and known ginkgolides exhibited antiplatelet aggregation activities. In particular, compounds U and D had IC50 values of 2.20 ± 0.15 and 6.50 ± 0.87 µM, respectively. This study has enriched the known structural diversity of ginkgolides and extended the application of mass spectrometry to the global profiling of natural products present in Ginkgo biloba L. Moreover, it could help chemists rapidly discover unreported compounds from a complex matrix.


Asunto(s)
Diterpenos , Ginkgo biloba , Ciclohexanos , Ginkgo biloba/química , Ginkgólidos/análisis , Ginkgólidos/química , Ginkgólidos/farmacología , Lactonas , Espectrometría de Masas , Extractos Vegetales
2.
J Pharm Biomed Anal ; 211: 114595, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35074563

RESUMEN

The identification of chemical constituents can assist the discovery of active ingredients and can differentiate herbs with multiple cultivars. In this study, a diagnostic ion and neutral loss filtering strategy was developed for the qualitative analysis of ginkgo leaf. The strategy is based on an ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. A large number of (110) of GL compounds were identified, including 8 potentially novel compounds and 42 previously unreported GL constituents. Moreover, 64 available compounds in 48 GL cultivars were analyzed via a combined multicomponent quantitative analysis and statistical analysis. The distribution of the 64 compounds among different cultivars was clarified in a principal component analysis and hot map visualization. Via a variable-importance-for-prediction score analysis, ten main differential compounds were found among the different cultivars. Collectively, these results indicated the usefulness of our approach in chemical profiling and discrimination of herbs with multiple botanical origins. This strategy can also help chemists rapidly identify novel compounds from a complex matrix.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Quimiometría , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Ginkgo biloba , Espectrometría de Masas en Tándem/métodos
3.
Biosci Biotechnol Biochem ; 85(6): 1332-1340, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33713113

RESUMEN

Owing to the high degree of diversity of metabolite pools and complexity of spatial and temporal distributions within biological tissues, currently available methods for metabolite characterization face large challenges. In this study, the temporal and spatial distributions of the alkaloid components of the medicinal plant lotus (Nelumbo nucifera) were investigated over various growth phases. The results showed that alkaloid biosynthesis in lotus leaf is regulated by development and that there is maximum accumulation of alkaloids when the lotus leaf was completely expanded. Furthermore, alkaloid content tended to be stable in mature lotus leaves. However, there was significant variation in the alkaloid content of lotus leaves with different genotypes, suggesting that genetic background is an important factor that affects the temporal and spatial distributions of alkaloids in sacred lotus leaves. The dynamic contents of alkaloids during the growth and development of lotus leaves provide insight into basic biological differences when sampling.


Asunto(s)
Alcaloides/metabolismo , Nelumbo/metabolismo , Alcaloides/biosíntesis , Extractos Vegetales/metabolismo , Hojas de la Planta/metabolismo , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA