Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Hazard Mater ; 454: 131468, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146338

RESUMEN

Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.


Asunto(s)
Melatonina , Metales Pesados , Melatonina/farmacología , Cadmio/toxicidad , Cadmio/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Superóxido Dismutasa/metabolismo , Cromo/metabolismo , Glutatión Reductasa/metabolismo , Clorofila/metabolismo , Glutatión/metabolismo , Plantones/metabolismo
2.
Phytomedicine ; 112: 154688, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738478

RESUMEN

BACKGROUND: Sophoridine (SR) has shown the potential to be an antiarrhythmic agent. However, SR's electrophysiological properties and druggability research are relatively inadequate, which limits the development of SR as an antiarrhythmic candidate. PURPOSE: To facilitate the development process of SR as an antiarrhythmic candidate, we performed integrated studies on the electrophysiological properties of SR in vitro and ex vivo to gain more comprehensive insights into the multi-ion channel blocking effects of SR, which provided the foundation for the further drugability studies in antiarrhythmic and safety studies. Firstly, SR's electrophysiological properties and antiarrhythmic potentials were recorded and assessed at the cell and tissue levels by comprehensively integrating the patch clamp with the Electrical and Optical Mapping systems. Subsequently, the antiarrhythmic effects of SR were validated by aconitine and ouabain-induced arrhythmia in vivo. Finally, the safety of SR as an antiarrhythmic candidate compound was evaluated based on the guidelines of the Comprehensive in Vitro Proarrhythmia Assay (CiPA). STUDY DESIGN: The antiarrhythmic effect of SR was evaluated at the in vitro, ex vivo, and in vivo levels. METHODS: Isolated primary cardiomyocytes and stable cell lines were prepared to explore the electrophysiologic properties of being a multiple ion-channel blocker in vitro by whole-cell patch clamp. Using electrical and optical mapping, the negative chronotropic effect of SR was determined in langendorff-perfused rat or guinea-pig hearts.The antiarrhythmic activity of SR was assessed by the ex vivo tachyarrhythmia models induced by left coronary artery ligation (LCAL) and isoproterenol (ISO). Canonical models of aconitine and ouabain-induced arrhythmia were used to verify the antiarrhythmic effects in vivo. Finally, the pro-arrhythmic risk of SR was detected in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hSCCMs) using a Microelectrode array (MEA). RESULTS: Single-cell patch assay validated the multiple ion-channel blockers of SR in transient outward current potassium currents (Ito), l-type calcium currents (ICa-l), and rapid activation delayed rectifier potassium currents (IKr). SR ex vivo depressed heart rates (HR) and ventricular conduction velocity (CV) and prolonged Q-T intervals in a concentration-dependent manner. Consistent with the changes in HRs, SR extended the active time of hearts and increased the action potential duration measured at 90% repolarization (APD90). SR could also significantly lengthen the onset time and curtail the duration of spontaneous ventricular tachycardia (VT) in the ex vivo arrhythmic model induced by LCAL. Meanwhile, SR could also significantly upregulate the programmed electrical stimulation (PES) frequency after the ISO challenge in forming electrical alternans and re-entrant excitation. Furthermore, SR exerted antiarrhythmic effects in the tachyarrhythmia models induced by aconitine and ouabain in vivo. Notably, the pro-arrhythmic risk of SR was shallow for a moderate inhibition of the human ether-à-go-go-related gene (hERG) channel. Moreover, SR prolonged field potential duration (FPDc) of hSCCMs in a concentration-dependent manner without early after depolarization (EAD) and arrhythmia occurrence. CONCLUSION: Our results indicated that SR manifested as a multiple ion-channel blocker in the electrophysiological properties and exerts antiarrhythmic effects ex vivo and in vivo. Meanwhile, due to the low pro-arrhythmic risk in the hERG inhibition assay and the induction of EAD, SR has great potential as a leading candidate in the treatment of ventricular tachyarrhythmia.


Asunto(s)
Antiarrítmicos , Matrinas , Ratas , Humanos , Animales , Cobayas , Antiarrítmicos/efectos adversos , Ouabaína/metabolismo , Ouabaína/farmacología , Ouabaína/uso terapéutico , Aconitina/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/tratamiento farmacológico , Canales Iónicos/metabolismo , Canales Iónicos/farmacología , Miocitos Cardíacos , Isoproterenol , Potasio/metabolismo , Potasio/farmacología , Potasio/uso terapéutico , Potenciales de Acción/fisiología
3.
Biomed Res Int ; 2022: 4483009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647185

RESUMEN

Recent studies indicate existence of beige adipocytes in adults. Upon activation, beige adipocytes burn energy for thermogenesis and contribute to regulation of energy balance. In this study, we have analyzed whether Jinlida granules (JLD) could activate beige adipocytes. JLD suspended in 0.5% carboxymethyl cellulose (CMC) was gavage fed to db/db mice at a daily dose of 3.8 g/kg. After 10 weeks, body weight, biochemical, and histological analyses were performed. In situ hybridization, immunofluorescence, and western blotting were conducted to test beige adipocyte activation in mice. X9 cells were induced with induction medium and maintenance medium containing 400 µg/mL of JLD. After completion of induction, cells were analyzed by Nile red staining, time polymerase chain reaction (PCR), western blotting, and immunofluorescence to understand the effect of JLD on the activation of beige adipocytes. A molecular docking method was used to preliminarily identify compounds in JLD, which hold the potential activation effect on uncoupling protein 1 (UCP1). JLD treatment significantly improved obesity in db/db mice. Biochemical results showed that JLD reduced blood glucose (GLU), triglyceride (TG), and low-density lipoprotein cholesterol (LDL) levels as well as liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in mice. Hematoxylin and eosin staining (H&E) showed that JLD reduced hepatocyte ballooning changes in the liver. Immunofluorescence showed that JLD increased the expression of the thermogenic protein, UCP1, in the beige adipose tissue of mice. JLD also increased the expression of UCP1 and inhibited the expression of miR-27a in X9 cells. Molecular docking results showed that epmedin B, epmedin C, icariin, puerarin, and salvianolic acid B had potential activation effects on UCP1. The results suggest that JLD may activate beige adipocytes by inhibiting miR-27a expression, thereby promoting thermogenesis in beige adipocytes. This study provides a new pharmacological basis for the clinical use of JLD.


Asunto(s)
Adipocitos Beige , MicroARNs , Adipocitos Beige/metabolismo , Animales , Medicamentos Herbarios Chinos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , MicroARNs/metabolismo , Simulación del Acoplamiento Molecular , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Environ Pollut ; 306: 119375, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500717

RESUMEN

The ever-increasing industrial activities over the decades have generated high toxic metals such as chromium (Cr) that hampers plant growth and development. To counter Cr-toxicity, plants have evolved complex defensive systems including hormonal crosstalk with various signaling pathways. 24-epibrassinolide (24-EBR) lowers oxidative stress and alleviates Cr(VI)-toxicity in plants. In this study, the concealed BR-mediated influences on Cr(VI)-stress tolerance were explored by transcriptome analysis in the Capsicum annuum. Results revealed a linkage between plant development under Cr(VI)-stress and the mitigating effect of 24-epibrassinolide and brassinazole. Growth inhibition, chlorophyll degradation, and a significant rise of malondialdehyde (MDA) were observed after 40 mg/L Cr(VI) treatment in Brz supplemented seedlings, whereas 24-EBR supplemented seedlings exhibited commendatory effect. Comparative transcriptome analysis showed that the expression levels of 6687 genes changed (3846 up-regulated and 2841 downregulated) under Cr(VI)-stress with Brz supplementation. Whereas the expression levels of only 1872 genes changed under Cr(VI)-stress with 24-EBR supplementation (1223 up-regulated and 649 downregulated). The functional categories of the differentially expressed genes (DEGs) by gene ontology (GO) revealed that drug transport, defense responses, and drug catabolic process were the considerable enrichments between 24-EBR and Brz supplemented seedlings under Cr(VI)-stress. Furthermore, auxin signaling, glutathione metabolism, ABC transporters, MAPK pathway, and 36 heavy metal-related genes were significantly differentially expressed components between Cr(VI)-stress, 24-EBR, and Brz supplemented seedlings. Overall, our data demonstrate that employing 24-EBR can commendably act as a growth stimulant in plants subjected to Cr(VI)-stress by modulating the physiological and defense regulatory system.


Asunto(s)
Cromo , Transcriptoma , Brasinoesteroides , Cromo/metabolismo , Cromo/toxicidad , Perfilación de la Expresión Génica , Plantones/metabolismo , Esteroides Heterocíclicos
5.
Pharm Biol ; 60(1): 274-281, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35138995

RESUMEN

CONTEXT: Jinlida (JLD) as a traditional Chinese medicine formula has been used to treat type 2 diabetes mellitus (T2DM) and studies have shown its anti-obesity effect. OBJECTIVE: To investigate the therapeutic effects of JLD in a mouse model of non-alcoholic fatty liver (NAFL). MATERIALS AND METHODS: C57BL/6J mice were divided into three groups and fed a low-diet diet (LFD), high-fat diet (HFD), or HFD + JLD (3.8 g/kg) for 16 weeks, respectively. The free fatty acids-induced lipotoxicity in HepG2 cells were used to evaluate the anti-pyroptotic effects of JLD. The pharmacological effects of JLD on NAFL were investigated by pathological examination, intraperitoneal glucose and insulin tolerance tests, western blotting, and quantitative real-time PCR. RESULTS: In vivo studies showed that JLD ameliorated HFD-induced liver injury, significantly decreased body weight and enhanced insulin sensitivity and improved glucose tolerance. Furthermore, JLD suppressed both the mRNA expression of caspase-1 (1.58 vs. 2.90), IL-1ß (0.93 vs. 3.44) and IL-18 (1.34 vs. 1.60) and protein expression of NLRP3 (2.04 vs. 5.71), pro-caspase-1 (2.68 vs. 4.92) and IL-1ß (1.61 vs. 2.60). In vitro, JLD inhibited the formation of lipid droplets induced by 2 mM FFA (IC50 = 2.727 mM), reduced the protein expression of NLRP3 (0.74 vs. 2.27), caspase-1 (0.57 vs. 2.68), p20 (1.67 vs. 3.33), and IL-1ß (1.44 vs. 2.41), and lowered the ratio of p-IKB-α/IKB-α (0.47 vs. 2.19). CONCLUSION: JLD has a protective effect against NAFLD, which may be related to its anti-pyroptosis, suggesting that JLD has the potential as a novel agent in the treatment of NAFLD.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Hepatocitos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Piroptosis/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Glucosa/metabolismo , Células Hep G2 , Hepatocitos/patología , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Artículo en Inglés | MEDLINE | ID: mdl-34367308

RESUMEN

OBJECTIVE: The aim of this study was to determine whether Si-Miao-Yong-An decoction (SMYAD) could protect cardiomyocytes from ischemia/reperfusion (I/R) injury and its underlying mechanisms. METHODS: C57BL/6 mice were used to establish a model of myocardial infarction by I/R injury and treated by SMYAD for 4 weeks. Then, the cardiac functions of mice were evaluated by cardiac magnetic resonance (CMR). Histopathological analysis for the heart remodeling was detected by H&E and Masson staining. The protein expression of collagen I, MMP9, and TNFα was detected by western blot in the heart tissues. H9C2 cells were used to establish the hypoxia/reoxygenation (H/R) model and SMYAD intervention. MTT assays detected the cell viability of myocardial cells. The expression level of IL-1ß was evaluated by ELISA. The expression levels of LC3B-II/LC3B-I, p-mTOR, mTOR, NLRP3, procaspase 1, and cleaved-caspase 1 in H9C2 cells were evaluated by Western blot. RESULTS: SMYAD improved cardiac functions such as ventricular volume and ejection fraction of the rats with ischemia/reperfusion injury. Morphological assay indicated that SMYAD reduced the scar size and inhibited fibrosis formation. It was found that SMYAD could regulate collagen I, MMP9, and TNFα protein expression levels in the heart tissues. SMYAD improved the survival rate of H9C2 cardiomyocytes in the H/R injury model. SMYAD elevated the rate of LC3B-II/LC3B-I protein expression, decreased the rate of p-mTOR/mTOR protein expression, and reduced expressions of caspase 1, NLRP3, and IL-1ß in H/R cardiomyocytes. CONCLUSION: SMYAD exerted protective effects on ischemia/reperfusion injury in myocardial cells by activating autophagy and inhibiting pyroptosis. This might be the reason why SMYAD protected myocardial tissue and improved cardiac function in mice with ischemia/reperfusion.

7.
Aging (Albany NY) ; 13(2): 2912-2940, 2021 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-33460401

RESUMEN

The clinical notably success of immunotherapy fosters an enthusiasm in developing drugs by enhancing antitumor immunity in the tumor microenvironment (TME). Epimedium, is a promising herbal medicine for tumor immunotherapy due to the pharmacological actions in immunological function modulation and antitumor. Here, we developed a novel systems pharmacology strategy to explore the polypharmacology mechanism of Epimedium involving in targeting TME of non-small cell lung cancer (NSCLC). This strategy integrates the active compounds screening, target predicting, network pharmacology analysis and onco-immune interacting to predict the potential active compounds that trigger the antitumor immunity. Icaritin (ICT), a major active ingredient of Epimedium, was predicted to have good drug-like properties and target immune microenvironment in NSCLC via regulating multiple targets and pathways. Then, we evidenced that the ICT effectively inhibited tumor growth in LLC tumor-bearing mice and increases the infiltration of CD8+ T cells in TME. In addition, we demonstrated that ICT promotes infiltration of CD8+ T cells in TME by downregulating the immunosuppressive cytokine (TNF-α, IL10, IL6) and upregulating chemotaxis (CXCL9 and CXCL10). Overall, the systems pharmacology strategy offers an important paradigm to understand the mechanism of polypharmacology of natural products targeting TME.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Epimedium , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/farmacología , Linfocitos T Citotóxicos/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Extractos Vegetales/uso terapéutico , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral/inmunología
8.
Biomed Pharmacother ; 114: 108781, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30903919

RESUMEN

AIMS: Activation of brown adipose tissue (BAT) thermogenesis could contribute to energy expenditure, which is critical for the treatment of obesity and type 2 diabetes mellitus (T2DM). In the present study, we aimed to systematically investigate whether traditional Chinese medication Jinlida (JLD) granules could improve metabolic disorders and activate BAT thermogenesis in C57BL/6 J mice fed with a high-fat diet (HFD). METHODS: In the present study, JLD (3.8 g/kg) in 0.5% of carboxymethyl cellulose (CMC) solution was administrated daily by oral gavage to HFD-induced mice for 15 weeks. The body weight, biochemical analysis, histology analysis, intraperitoneal glucose and insulin tolerance (OGTT and ITT) tests were measured to explore metabolic disorders. Cold tolerance test, real-time PCR (qRT-PCR), immunohistochemistry, and western blot were performed to evaluate BAT function. RESULTS: As results, JLD treatment significantly ameliorated HFD-induced obesity and fat mass gain, maintained glucose and lipid homeostasis, and improved hepatic steatosis and inflammation. More importantly, we observed that JLD markedly activated BAT thermogenesis in HFD-induced obese mice. Moreover, our data confirmed that JLD promoted mitochondrial biogenesis and fatty acid oxidation metabolism in BAT. CONCLUSIONS: These data suggested that JLD could improve metabolic disorders in associated with activation of BAT thermogenesis via enhancement of mitochondrial biogenesis and fatty acid oxidation metabolism, thus providing a new pharmacological evidence for the clinical usage of JLD in T2DM treatment.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Enfermedades Metabólicas/tratamiento farmacológico , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efectos de los fármacos , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Medicina Tradicional China/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Termogénesis/efectos de los fármacos
9.
J Ethnopharmacol ; 137(1): 414-20, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21669272

RESUMEN

This study was designed to investigate the effects of the Chinese Yi-Qi-Bu-Shen Recipe (YB) on brain stem auditory evoked potential (BAEP) in diabetic rats and on the protection of the diabetic rat brain's functional lesion. Thirty-three male rats were randomly divided into three groups: the normal control group (NC), the diabetic group (DM), and the diabetic rats treated with YB group (DM+YB). Blood glucose and body weight were measured every three weeks. After six weeks, the serum insulin, blood biochemical indices, superoxide dismutase, malondialdehyde, monoamine neurotransmitters, and BAEP were measured. Compared with the NC group, the waves III, V PLs, and the I-III, I-V IPLs of BAEP in the DM group were significantly delayed (all P<0.05). However, YB-treated diabetic rats maintained a normal brainstem function over the experimental period. Compared with the NC group, the waves I, III, V PL, and waves I-III, III-V and I-V IPLs of BAEP in the DM+YB group were very close (all P>0.05). On the other hand, compared with the DM group, the III, V PLs and the I-III, I-V IPLs of BAEP in the DM+YB group were significantly improved. It was discovered that the central conduction time of rats with diabetes had a close correlation with serum insulin, blood glucose, malondialdehyde, and insulin resistance index. Our results suggest that YB extract has a beneficial effect in preserving the brain's electrophysiological function in diabetic rats, likely through its antihyperglycemic activity, ability to reduce insulin resistance, and antioxidant activity.


Asunto(s)
Tronco Encefálico/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Hipoglucemiantes/farmacología , Fármacos Neuroprotectores/farmacología , Estimulación Acústica , Animales , Monoaminas Biogénicas/metabolismo , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Peso Corporal , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/fisiopatología , Insulina/sangre , Resistencia a la Insulina , Masculino , Malondialdehído/sangre , Conducción Nerviosa/efectos de los fármacos , Ratas , Ratas Wistar , Superóxido Dismutasa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA