Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biosci Bioeng ; 95(5): 448-54, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-16233438

RESUMEN

Sake mash was prepared using rice with polishing ratios of 70%, 80%, 90% and 98%. At a polishing ratio of 70%, the highest amounts of ethyl caproate were produced in sake mash, and supplementation of inositol caused a decrease in ethyl caproate production. However, at a polishing ratio of over 90%, supplementation of inositol had no effect on ethyl caproate production. These results suggest that the use of rice with a polishing ratio of 70% results in increased ethyl caproate content in sake when limiting the inositol available to yeast. The reduction in ethyl caproate production following inositol addition was due to the decrease in its enzymatic substrate caproic acid, because the concentrations of middle chain fatty acids (MCFA), caproic acid, caprylic acid and capric acid in sake were lowered by inositol. A disruptant of the OPI1 gene, an inositol/choline-mediated negative regulatory gene, produced higher amounts of MCFA than the control strain both in the static culture and in sake mash when a sufficient amount of inositol was supplemented. Therefore, the enhancement of MCFA biosynthesis by inositol limitation was thought to be caused not by a posttranscriptional event, but predominantly by transcriptional enhancement of fatty acid biosynthetic genes. The overexpression of FAS1 considerably stimulated MCFA formation while that of ASC2, ACC1 and FAS2 genes was not effective. Co-overexpression of FAS1 and FAS2 resulted in a maximal stimulation of MCFA formation and substantially abolished the inhibitory effect of inositol on MCFA formation. These results suggest that the repression of FAS1 gene expression by inositol results in the decrease in MCFA formation. Therefore, it is presumed that the removal of inositol by polishing the rice used in sake brewing, increases the production of ethyl esters of MCFA, since high-level production of MCFA is achieved by the derepression of FAS1 transcription.

2.
Biosci Biotechnol Biochem ; 66(12): 2600-5, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12596854

RESUMEN

We cloned a genomic DNA encoding the glutamate decarboxylase (GAD) from Aspergillus oryzae using a 200-bp DNA fragment as the probe. This DNA fragment was amplified by the reverse transcription polymerase chain reaction with mRNA of A. oryzae as the template and degenerate primers designed from the conserved amino acid sequence of Escherichia coli GAD and Arabidopsis thaliana GAD. Nucleotide sequencing analysis showed that the cloned gene (designated gadA) encoded 514 amino acid residues and contained three introns. Southern hybridization showed that the gadA gene was on a 6.0-kb SacI fragment and that there was a single copy in the A. oryzae chromosome. The cloned gene was functional, because one transformant of A. oryzae containing multiple copies of the gadA gene had 10-fold the GAD activity and a 12-fold increase in gamma-aminobutyric acid production compared with the control strain.


Asunto(s)
Aspergillus oryzae/enzimología , Glutamato Descarboxilasa/genética , Secuencia de Aminoácidos , Aspergillus oryzae/genética , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Dosificación de Gen , Expresión Génica , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/metabolismo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido gamma-Aminobutírico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA