Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Orthop Trauma ; 50: 102381, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435398

RESUMEN

Stress fractures are a consequence of repeated submaximal loads with inadequate time for recovery and biologic repair or remodelling. The foot and ankle complex (FAC) represents a common site for development of stress fractures. Whilst the overall incidence of stress fractures is low, they are prevalent in athletes and military personnel causing significant time away from sports or work. Within these populations, certain stress fractures directly correlate to specific activities. Factors that commonly influence these fractures include an acute increase in new repetitive physical activity combined with muscle fatigue, training errors or improper athletic techniques, which challenge the regenerative and remodelling capacity of bone. Depending on the site that is subject to repetitive loading, various biomechanical factors can result in abnormal concentration of forces to specific areas of the FAC resulting in stress fracture. Decreased bone marrow density (BMD) is a major biologic cause for developing stress fractures. The female athlete triad comprising eating disorder, amenorrhea and osteoporosis in competitive athletes also predisposes to stress fractures. Vitamin D deficiency is also postulated to be the cause of these fractures and may contribute to poor healing. Clinical presentation is usually with vague pain of insidious onset which worsens with activity and improves with rest. Diffuse tenderness over the affected bone is common with only a minority having any visible swelling. Plain radiographs are the first line of investigation but rarely reveal an obvious fracture. MRI scans aid in diagnosis and CT scans help in treatment and characterisation of the fracture and monitor healing. Management relates to the site of injury, which stratifies them into high or low-risk. Stress fractures of the calcaneus, cuboid and cuneiforms are classed as low-risk fractures as they usually heal with simple activity modification or short duration of non-weight bearing. Stress fractures of the navicular, talus and hallucal sesamoids are classed as high-risk fractures due to higher rates of non-union and prolonged recovery time. Metatarsal fractures can be considered high or low-risk depending on location. These warrant aggressive management, often requiring surgical intervention. Adjuncts such as vitamin D supplements, external shockwave therapy, low-intensity pulsed ultrasound therapy have been used with varying success but there remains little supportive evidence of superiority in the available literature.

2.
J Control Release ; 333: 188-245, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33766690

RESUMEN

Cancer being one of the most precarious and second most fatal diseases evokes opportunities for multimodal delivery platforms which will act synergistically for efficient cancer treatment. Multifunctional iron oxide magnetic nanoparticles (IONPs) are being studied for few decades and still attracting increasing attention for several biomedical applications owing to their multifunctional design and intrinsic magnetic properties that provide a multimodal theranostic platform for cancer therapy, monitoring and diagnosis. The review article aims to provide brief information on various surface chemistries involved in modulating IONPs properties to exhibit potential therapy in cancer treatment. The review addresses structural, magnetic, thermal and optical properties of IONPs which aids in the fabrication of efficient multimodal nanoplatform in cancer therapy. The review discussed the pharmacokinetics of IONPs and attributes influencing them. This review inculcates recent advancements in therapies, focused on tumor-microenvironment-responsive and targeted therapy along with their eminent role in cancer diagnosis. The concept of stimuli-responsive including endogenous, exogenous and dual/multi stimuli-based delivery platform demonstrated significantly enhanced anticancer therapy. Several therapeutic approaches viz. chemotherapy, radiotherapy, immunotherapy, hyperthermia, gene therapy, sonodynamic therapy, photothermal, photodynamic-based therapy along with biosensing and several toxicity aspects of IONPs have been addressed in this review for effective cancer treatment.


Asunto(s)
Hipertermia Inducida , Neoplasias , Terapia Combinada , Compuestos Férricos , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fototerapia , Nanomedicina Teranóstica , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA