Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
DNA Res ; 21(4): 355-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24510440

RESUMEN

Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium(®) SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using 'pseudomolecules' representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed.


Asunto(s)
Brassica napus/genética , Mapeo Cromosómico , Genes de Plantas , Semillas/genética , Proteínas de Arabidopsis/genética , Brassica napus/química , Simulación por Computador , Ácidos Erucicos/análisis , Estudio de Asociación del Genoma Completo/métodos , Glucosinolatos/análisis , Histona Acetiltransferasas/genética , Desequilibrio de Ligamiento , Fenotipo , Aceites de Plantas/análisis , Polimorfismo de Nucleótido Simple , Semillas/anatomía & histología
2.
Nature ; 459(7249): 992-5, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19483678

RESUMEN

Higher plants produce seed through pollination, using specific interactions between pollen and pistil. Self-incompatibility is an important mechanism used in many species to prevent inbreeding; it is controlled by a multi-allelic S locus. 'Self' (incompatible) pollen is discriminated from 'non-self' (compatible) pollen by interaction of pollen and pistil S locus components, and is subsequently inhibited. In Papaver rhoeas, the pistil S locus product is a small protein that interacts with incompatible pollen, triggering a Ca(2+)-dependent signalling network, resulting in pollen inhibition and programmed cell death. Here we have cloned three alleles of a highly polymorphic pollen-expressed gene, PrpS (Papaver rhoeas pollen S), from Papaver and provide evidence that this encodes the pollen S locus determinant. PrpS is a single-copy gene linked to the pistil S gene (currently called S, but referred to hereafter as PrsS for Papaver rhoeas stigma S determinant). Sequence analysis indicates that PrsS and PrpS are equally ancient and probably co-evolved. PrpS encodes a novel approximately 20-kDa protein. Consistent with predictions that it is a transmembrane protein, PrpS is associated with the plasma membrane. We show that a predicted extracellular loop segment of PrpS interacts with PrsS and, using PrpS antisense oligonucleotides, we demonstrate that PrpS is involved in S-specific inhibition of incompatible pollen. Identification of PrpS represents a major advance in our understanding of the Papaver self-incompatibility system. As a novel cell-cell recognition determinant it contributes to the available information concerning the origins and evolution of cell-cell recognition systems involved in discrimination between self and non-self, which also include histocompatibility systems in primitive chordates and vertebrates.


Asunto(s)
Papaver/fisiología , Polen/fisiología , Alelos , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligamiento Genético , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/citología , Polinización/fisiología , Reproducción/fisiología
3.
Plant Physiol ; 149(1): 499-514, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18997116

RESUMEN

The diversification of chemical production in glandular trichomes is important in the development of resistance against pathogens and pests in two species of tomato. We have used genetic and genomic approaches to uncover some of the biochemical and molecular mechanisms that underlie the divergence in trichome metabolism between the wild species Solanum habrochaites LA1777 and its cultivated relative, Solanum lycopersicum. LA1777 produces high amounts of insecticidal sesquiterpene carboxylic acids (SCAs), whereas cultivated tomatoes lack SCAs and are more susceptible to pests. We show that trichomes of the two species have nearly opposite terpenoid profiles, consisting mainly of monoterpenes and low levels of sesquiterpenes in S. lycopersicum and mainly of SCAs and very low monoterpene levels in LA1777. The accumulation patterns of these terpenoids are different during development, in contrast to the developmental expression profiles of terpenoid pathway genes, which are similar in the two species, but they do not correlate in either case with terpenoid accumulation. However, our data suggest that the accumulation of monoterpenes in S. lycopersicum and major sesquiterpenes in LA1777 are linked both genetically and biochemically. Metabolite analyses after targeted gene silencing, inhibitor treatments, and precursor feeding all show that sesquiterpene biosynthesis relies mainly on products from the plastidic 2-C-methyl-d-erythritol-4-phosphate pathway in LA1777 but less so in the cultivated species. Furthermore, two classes of sesquiterpenes produced by the wild species may be synthesized from distinct pools of precursors via cytosolic and plastidial cyclases. However, highly trichome-expressed sesquiterpene cyclase-like enzymes were ruled out as being involved in the production of major LA1777 sesquiterpenes.


Asunto(s)
Monoterpenos/metabolismo , Sesquiterpenos/metabolismo , Solanum lycopersicum/metabolismo , Solanum/metabolismo , Ácidos Carboxílicos/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genoma de Planta , Solanum lycopersicum/genética , Aceites Volátiles/análisis , ARN de Planta/metabolismo , Solanum/genética , Fosfatos de Azúcar/metabolismo
4.
Plant Physiol ; 148(4): 1830-46, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18931142

RESUMEN

Acyl sugars containing branched-chain fatty acids (BCFAs) are exuded by glandular trichomes of many species in Solanaceae, having an important defensive role against insects. From isotope-feeding studies, two modes of BCFA elongation have been proposed: (1) fatty acid synthase-mediated two-carbon elongation in the high acyl sugar-producing tomato species Solanum pennellii and Datura metel; and (2) alpha-keto acid elongation-mediated one-carbon increments in several tobacco (Nicotiana) species and a Petunia species. To investigate the molecular mechanisms underlying BCFAs and acyl sugar production in trichomes, we have taken a comparative genomic approach to identify critical enzymatic steps followed by gene silencing and metabolite analysis in S. pennellii and Nicotiana benthamiana. Our study verified the existence of distinct mechanisms of acyl sugar synthesis in Solanaceae. From microarray analyses, genes associated with alpha-keto acid elongation were found to be among the most strongly expressed in N. benthamiana trichomes only, supporting this model in tobacco species. Genes encoding components of the branched-chain keto-acid dehydrogenase complex were expressed at particularly high levels in trichomes of both species, and we show using virus-induced gene silencing that they are required for BCFA production in both cases and for acyl sugar synthesis in N. benthamiana. Functional analysis by down-regulation of specific KAS I genes and cerulenin inhibition indicated the involvement of the fatty acid synthase complex in BCFA production in S. pennellii. In summary, our study highlights both conserved and divergent mechanisms in the production of important defense compounds in Solanaceae and defines potential targets for engineering acyl sugar production in plants for improved pest tolerance.


Asunto(s)
Carbohidratos/biosíntesis , Ácidos Grasos/biosíntesis , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Solanum/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/fisiología , Acilcoenzima A/metabolismo , Acilcoenzima A/fisiología , Carbohidratos/genética , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/fisiología , Ácidos Grasos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Cetoácidos/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solanum/genética , Solanum/ultraestructura , Nicotiana/genética , Nicotiana/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA