RESUMEN
Experience-driven synaptic plasticity is believed to underlie adaptive behavior by rearranging the way neuronal circuits process information. We have previously discovered that O-GlcNAc transferase (OGT), an enzyme that modifies protein function by attaching ß-N-acetylglucosamine (GlcNAc) to serine and threonine residues of intracellular proteins (O-GlcNAc), regulates food intake by modulating excitatory synaptic function in neurons in the hypothalamus. However, how OGT regulates excitatory synapse function is largely unknown. Here we demonstrate that OGT is enriched in the postsynaptic density of excitatory synapses. In the postsynaptic density, O-GlcNAcylation on multiple proteins increased upon neuronal stimulation. Knockout of the OGT gene decreased the synaptic expression of the AMPA receptor GluA2 and GluA3 subunits, but not the GluA1 subunit. The number of opposed excitatory presynaptic terminals was sharply reduced upon postsynaptic knockout of OGT. There were also fewer and less mature dendritic spines on OGT knockout neurons. These data identify OGT as a molecular mechanism that regulates synapse maturity.
Asunto(s)
Hipotálamo/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores/genética , Hipotálamo/citología , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , Plasticidad Neuronal/genética , Terminales Presinápticos/metabolismo , Ratas , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/genética , Transmisión Sináptica/genéticaRESUMEN
Hyaluronan, a high molecular mass polysaccharide on the vertebrate cell surface and extracellular matrix, is produced at the plasma membrane by hyaluronan synthases using UDP-GlcNAc and UDP-GlcUA as substrates. The availability of these UDP-sugar substrates can limit the synthesis rate of hyaluronan. In this study, we show that the cellular level of UDP-HexNAc also controls hyaluronan synthesis by modulating the expression of HAS2 (hyaluronan synthase 2). Increasing UDP-HexNAc in HaCaT keratinocytes by adding glucosamine down-regulated HAS2 gene expression, whereas a decrease in UDP-HexNAc, realized by mannose treatment or siRNA for GFAT1 (glutamine:fructose-6-phosphate amidotransferase 1), enhanced expression of the gene. Tracing the UDP-HexNAc-initiated signal to the HAS2 promoter revealed no change in the binding of STAT3, NF-κB, and cAMP response element-binding protein, shown previously to mediate growth factor and cytokine signals on HAS2 expression. Instead, altered binding of SP1 and YY1 to the promoter correlated with cellular UDP-HexNAc content and inhibition of HAS2 expression. siRNA silencing of YY1 and SP1 confirmed their inhibitory effects on HAS2 expression. Reduced and increased levels of O-GlcNAc-modified SP1 and YY1 proteins were associated with stimulation or inhibition of HAS2 expression, respectively. Our data are consistent with the hypothesis that, by regulating the level of protein O-GlcNAc modifications, cellular UDP-HexNAc content controls HAS2 transcription and decreases the effects on hyaluronan synthesis that would result from cellular fluctuations of this substrate.
Asunto(s)
Acetilglucosamina/metabolismo , Glucuronosiltransferasa/metabolismo , Factor de Transcripción Sp1/metabolismo , Uridina Difosfato/metabolismo , Factor de Transcripción YY1/metabolismo , Acetilglucosamina/farmacología , Biología Computacional , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Glucuronosiltransferasa/genética , Humanos , Hialuronano Sintasas , Ácido Hialurónico/biosíntesis , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Manosa/metabolismo , Manosa/farmacología , Transferasas de Grupos Nitrogenados/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Elementos de Respuesta/genética , Factores de TiempoRESUMEN
The candidate tumor suppressor BAP1 is a deubiquitinating enzyme (DUB) involved in the regulation of cell proliferation, although the molecular mechanisms governing its function remain poorly defined. BAP1 was recently shown to interact with and deubiquitinate the transcriptional regulator host cell factor 1 (HCF-1). Here we show that BAP1 assembles multiprotein complexes containing numerous transcription factors and cofactors, including HCF-1 and the transcription factor Yin Yang 1 (YY1). Through its coiled-coil motif, BAP1 directly interacts with the zinc fingers of YY1. Moreover, HCF-1 interacts with the middle region of YY1 encompassing the glycine-lysine-rich domain and is essential for the formation of a ternary complex with YY1 and BAP1 in vivo. BAP1 activates transcription in an enzymatic-activity-dependent manner and regulates the expression of a variety of genes involved in numerous cellular processes. We further show that BAP1 and HCF-1 are recruited by YY1 to the promoter of the cox7c gene, which encodes a mitochondrial protein used here as a model of BAP1-activated gene expression. Our findings (i) establish a direct link between BAP1 and the transcriptional control of genes regulating cell growth and proliferation and (ii) shed light on a novel mechanism of transcription regulation involving ubiquitin signaling.
Asunto(s)
Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Factor de Transcripción YY1/química , Factor de Transcripción YY1/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Bovinos , Línea Celular , Proliferación Celular , ADN/genética , ADN/metabolismo , Complejo IV de Transporte de Electrones/genética , Células HeLa , Factor C1 de la Célula Huésped/antagonistas & inhibidores , Factor C1 de la Célula Huésped/genética , Humanos , Técnicas In Vitro , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Interferencia de ARN , Homología de Secuencia de Ácido Nucleico , Transducción de Señal , Activación Transcripcional , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/genética , Ubiquitinación , Factor de Transcripción YY1/antagonistas & inhibidores , Factor de Transcripción YY1/genéticaRESUMEN
A hallmark of signal transduction is the dynamic and inducible post-translational modification of proteins. In addition to the well characterized phosphorylation of proteins, other modifications have been shown to be regulatory, including O-linked beta-N-acetylglucosamine (O-GlcNAc). O-GlcNAc modifies serine and threonine residues on a myriad of nuclear and cytosolic proteins, and for several proteins there appears to be a reciprocal relationship between phosphorylation and O-GlcNAc modification. Here we report further evidence of this yin-yang relationship by demonstrating that O-GlcNAc transferase, the enzyme that adds O-GlcNAc to proteins, exists in stable and active complexes with the serine/threonine phosphatases PP1beta and PP1gamma, enzymes that remove phosphate from proteins. The existence of this complex highlights the importance of understanding the dynamic relationship between O-GlcNAc and phosphate in modulating protein function in many cellular processes and disease states such as Alzheimer's disease and type II diabetes.