Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170478, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38301780

RESUMEN

Denitrifying woodchip bioreactors (DBRs) are an established nitrate mitigation technology, but uncertainty remains on their viability for phosphorus (P) removal due to inconsistent source-sink behaviour in field trials. We investigated whether iron (Fe) redox cycling could be the missing link needed to explain P dynamics in these systems. A pilot-scale DBR (Aotearoa New Zealand) was monitored for the first two drainage seasons (2017-2018), with supplemental in-field measurements of reduced solutes (Fe2+, HS-/H2S) and their conjugate oxidised species (Fe3+/SO42-) made in 2021 to constrain within-reactor redox gradients. Consistent with thermodynamics, the dissolution of Fe3+(s) to Fe2+(aq) within the DBR sequentially followed O2, NO3- and MnO2(s) reduction, but occurred before SO42- reduction. Monitoring of inlet and outlet chemistry revealed tight coupling between Fe and P (inlet R2 0.94, outlet R2 0.85), but distinct dynamics between drainage seasons. In season one, outlet P exceeded inlet P (net P source), and coincided with elevated outlet Fe2+, but at ⁓50 % lower P concentrations relative to inlet Fe:P ratios. In season 2 the reactor became a net P sink, coinciding with declining outlet Fe2+ concentrations (indicating exhaustion of Fe3+(s) hydroxides and associated P). In order to characterize P removal under varying source dynamics (i.e. inflows vs in-situ P releases), we used the inlet Fe vs P relationship to estimate P binding to colloidal Fe (hydr)oxide surfaces under oxic conditions, and the outlet Fe2+ concentration to estimate in-situ P releases associated with Fe (hydr)oxide reduction. Inferred P-removal rates were highest early in season 1 (k = 0.60 g P m3 d-1; 75-100 % removal), declining significantly thereafter (k = 0.01 ± 0.02 g P m3 d-1; ca. 3-67 % removal). These calculations suggest that microbiological P removal in DBRs can occur at comparable magnitudes to nitrate removal by denitrification, depending mainly on P availability and hydraulic retention efficiency.


Asunto(s)
Nitratos , Fósforo , Compuestos de Manganeso , Desnitrificación , Óxidos , Reactores Biológicos , Nitrógeno
2.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273563

RESUMEN

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Asunto(s)
Ecosistema , Agua Subterránea , Biodiversidad , Agua Dulce , Contaminación Ambiental
3.
Environ Sci Technol ; 49(24): 14101-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26544638

RESUMEN

The microbial oxidation of organic matter coupled to reductive iron oxide dissolution is widely recognized as the dominant mechanism driving elevated arsenic (As) concentrations in aquifers. This paper considers the potential of nanoparticles to increase the mobility of As in aquifers, thereby accounting for discrepancies between predicted and observed As transport reported elsewhere. Arsenic, phosphorus, and iron size distributions and natural organic matter association were examined along a flow path from surface water via the hyporheic zone to shallow groundwater. Our analysis demonstrates that the colloidal Fe concentration (>1 kDa) correlates with both colloidal P and colloidal As concentrations. Importantly, increases in the concentration of colloidal P (>1 kDa) were positively correlated with increases in the concentration of nominally dissolved As (<1 kDa), but no correlation was observed between colloidal As and nominally dissolved P. This suggests that P actively competes for adsorption sites on Fe nanoparticles, displacing adsorbed As, thus mirroring their interaction with Fe oxides in the aquifer matrix. Dynamic redox fronts at the interface between streams and aquifers may therefore provide globally widespread conditions for the generation of Fe nanoparticles, a mobile phase for As adsorption currently not a part of reactive transport models.


Asunto(s)
Arsénico/análisis , Agua Subterránea/química , Hierro/análisis , Nanopartículas del Metal/química , Fósforo/análisis , Ríos/química , Adsorción , Fraccionamiento Químico , Coloides , Sedimentos Geológicos/química , Agua Subterránea/análisis , Microscopía de Fuerza Atómica , Modelos Teóricos , Nanopartículas , Nueva Gales del Sur , Oxidación-Reducción , Tamaño de la Partícula , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA