Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gene ; 860: 147215, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709878

RESUMEN

In response to biotic and abiotic stressors, aldehydes are detoxified and converted to carboxylic acids by aldehyde dehydrogenases (ALDHs), which are enzymes that use NAD+/NADP+ as cofactors. Garlic (Allium sativum L.) has not yet undergone a systematic examination of the ALDH superfamily, despite the genome sequence having been made public. In this investigation, we identified, characterized, and profiled the expression of the garlic ALDH gene family over the entire genome. The ALDH Gene Nomenclature Committee (AGNC) classification was used to classify and name the 34 ALDH genes that were discovered. Except for chromosome 8, all AsALDH genes were dispersed across the chromosomes. AsALDH genes have various localizations, according to predictions about subcellular localization. The AsALDH proteins are more varied and closely related to rice than to Arabidopsis, according to a study of conserved motifs and phylogenetic relationships. The presence of stress modulation pathways is indicated by the abundance of stress-related cis-elements in the AsALDH genes' promoter regions. Analysis of the RNA-seq data showed that AsALDHs expressed differently in various tissues and at various developmental stages. Nine AsALDHs were chosen for study using RT-qPCR, and the results revealed that the majority of the genes were upregulated in response to ABA and downregulated in response to salinity and drought. The results of this study improved our knowledge of the traits, evolutionary background, and biological functions of AsALDHs genes in growth and development.


Asunto(s)
Arabidopsis , Ajo , Ajo/genética , Filogenia , Familia de Multigenes , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Sequías , Salinidad , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
2.
Plants (Basel) ; 10(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203650

RESUMEN

Weed management is an arduous undertaking in crop production. Integrated weed management, inclusive of the application of bioherbicides, is an emerging weed control strategy toward sustainable agriculture. In general, bioherbicides are derived either from plants containing phytotoxic allelochemicals or certain disease-carrying microbes that can suppress weed populations. While bioherbicides have exhibited great promise in deterring weed seed germination and growth, only a few in vitro studies have been conducted on the physiological responses they evoke in weeds. This review discusses bioherbicide products that are currently available on the market, bioherbicide impact on weed physiology, and potential factors influencing bioherbicide efficacy. A new promising bioherbicide product is introduced at the end of this paper. When absorbed, phytotoxic plant extracts or metabolites disrupt cell membrane integrity and important biochemical processes in weeds. The phytotoxic impact on weed growth is reflected in low levels of root cell division, nutrient absorption, and growth hormone and pigment synthesis, as well as in the development of reactive oxygen species (ROS), stress-related hormones, and abnormal antioxidant activity. The inconsistency of bioherbicide efficacy is a primary factor restricting their widespread use, which is influenced by factors such as bioactive compound content, weed control spectrum, formulation, and application method.

3.
Front Med (Lausanne) ; 7: 444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850918

RESUMEN

COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31743104

RESUMEN

Background The in vivo anticancer effect of the Trema orientalis leaves crude methanol extract (TLME) was screened against Ehrlich ascites carcinoma (EAC) in Swiss albino mice. Materials and methods The cytotoxic activity of TLME was determined in vitro by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The growth inhibitory activity and morphological alterations were determined by the hemocytometer counting of the EAC cells using trypan blue dye. The apoptotic cells were assessed by DAPI (4',6-diamidino-2-phenylindole) staining. The hematological and biochemical parameters of experimental mice were also estimated. Results After treatment with the TLME, the viable tumor cell count, morphological changes and nuclear damages of the EAC cells were observed along with the hematological parameters of the experimental mice. The LD50 of TLME was 3120.650 mg/kg body weight, and this extract was proven to be safe at a dose of as high as 800 mg/kg body weight. The oral administration of the TLME at 400 mg/kg body weight resulted in approximately 59% tumor cell growth inhibition compared with the control mice, with considerable apoptotic features, including membrane blebbing, chromatin condensation, nuclear fragmentation and aggregation of the apoptotic bodies in DAPI staining under a fluorescence microscope. The TLME also dose-dependently restored the altered hematological parameters to approximately normal levels. The TLME exhibited bolstering cytotoxic effect against the EAC cell with the IC50 value of 29.952 ± 1.816 µg/mL. Conclusion The TLME has potential as a natural anti-cancer product with apoptosis induction property and cytotoxicity against carcinoma cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Ehrlich/tratamiento farmacológico , Extractos Vegetales/farmacología , Trema/química , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Carcinoma de Ehrlich/patología , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Masculino , Ratones , Extractos Vegetales/administración & dosificación , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta
5.
Environ Sci Pollut Res Int ; 26(20): 20183-20207, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31119535

RESUMEN

Phosphorus (P), an essential element for living cells, is present in different soluble and adsorbed chemical forms found in soil, sediment, and water. Most species are generally immobile and easily adsorbed onto soil particles. However, P is a major concern owing to its serious environmental effects (e.g., eutrophication, scale formation) when found in excess in natural or engineered environments. Commercial chemicals, fertilizers, sewage effluent, animal manure, and agricultural waste are the major sources of P pollution. But there is limited P resources worldwide. Therefore, the fate, effects, and transport of P in association with its removal, treatment, and recycling in natural and engineered systems are important. P removal and recycling technologies utilize different types of physical, biological, and chemical processes. Moreover, P minerals (struvite, vivianite, etc.) can precipitate and form scales in drinking water and wastewater systems. Hence, P minerals (e.g., struvite, vivianite etc.) are problems when left uncontrolled and unmonitored although their recovery is beneficial (e.g., slow release fertilizers, sustainable P sources, soil enhancers). Sources like wastewater, human waste, waste nutrient solution, etc. can be used for P recycling. This review paper extensively summarizes the importance and distribution of P in different environmental compartments, the effects of P in natural and engineered systems, P removal mechanisms through treatment, and recycling technologies specially focusing on various types of phosphate mineral precipitation. In particular, the factors controlling mineral (e.g., struvite and vivianite) precipitation in natural and engineered systems are also discussed.


Asunto(s)
Contaminantes Ambientales/análisis , Compuestos Ferrosos/análisis , Minerales/análisis , Fosfatos/análisis , Fósforo/análisis , Estruvita/análisis , Purificación del Agua/métodos , Adsorción , Animales , Humanos , Reciclaje , Aguas Residuales/química
6.
Biosci Rep ; 37(3)2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28336764

RESUMEN

Moringa oleifera has potential anti-hyperglycaemic effects that have been reported earlier by different scientific groups using animal models of diabetes. We aimed to explore the possible mechanisms of action of M. oleifera extract through different methods. Primarily, we measured fasting blood glucose and performed glucose tolerance test, in Type 2 diabetic rats. Further, we studied the effects of extracts on pancreatic insulin concentration. Extracts' effect on carbohydrate breakdown was assayed using α-amylase inhibition assays and assay of six different segments of gastrointestinal (GI) tracts. An in situ intestinal perfusion model and a glucose fibre assay were performed to see the potentiality of M. oleifera on glucose absorption. M. oleifera showed no significant change in insulin secretion in vivo Additionally, substantial effect of the extract was seen on retarded glucose absorption and in the in situ perfusion study of rat intestinal model. α-amylase action was inhibited by the extract, yet again, these findings were further confirmed via the Six Segment assay, where sucrose digestion was found to be inhibited throughout the length of the GI tract. A combined in vitro, in vivo and in situ tests justified the potential of anti-hyperglycaemic activity of M. oleifera and its tissue level mechanism is also justified.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glicósido Hidrolasas/antagonistas & inhibidores , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Moringa oleifera , Extractos Vegetales/uso terapéutico , Animales , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glicósido Hidrolasas/metabolismo , Hiperglucemia/sangre , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Absorción Intestinal/efectos de los fármacos , Moringa oleifera/química , Extractos Vegetales/farmacología , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA