Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 428: 136783, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450955

RESUMEN

Tea residues represent one of the major agricultural wastes that are generated after the processing of tea. They account for 21-28% of crude protein and are often discarded without the extraction of valuable proteins. Due to various bioactivity and functional properties, tea proteins are an excellent alternative to other plant-based proteins for usage as food supplements at a higher dosage. Moreover, their good gelation capacity is ideal for the manufacturing of dairy products, jellies, condensation protein, gelatin gel, bread, etc. The current study is the first to comprehend various tea protein extraction methods and their amino acid profile. The preparation of tea protein bioactive peptides and hydrolysates are summarized. Several functional properties (solubility, foaming capacity, emulsification, water/oil absorption capacity) and bioactivities (antioxidant, antihypertensive, antidiabetic) of tea proteins are emphasized.


Asunto(s)
Camellia sinensis , Camellia sinensis/química , Té/química , Antioxidantes/química , Proteínas de Plantas , Péptidos
2.
Food Chem ; 404(Pt B): 134571, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323010

RESUMEN

Freeze drying (FD) is an important and highly effective technology in food industry for retaining the quality in final dried product. This drying technique is performed at lower temperatures, restricting the damage suffered by thermally sensitive ingredients. However, FD consumes large amount of energy and required more time than conventional drying methods. The utilization of ultrasonic technology (US) as pre-treatment before FD represents a promising alternative in accelerating the drying process, decreases energy consumption and maintaining quality as compared to the non pre-treated sample. This review summarizes research progress and current studies in ultrasonic as pre-treatment for freeze drying (US + FD) technique. The impact of US + FD on phytochemical, color, texture and micro-structure of food are well summarized. The review also suggests that the optimised US treatment parameters are required to improve heat and mass transfer in food samples which help in speed up the drying process and reduction of drying time.


Asunto(s)
Desecación , Manipulación de Alimentos , Liofilización/métodos , Desecación/métodos , Manipulación de Alimentos/métodos , Fitoquímicos , Suplementos Dietéticos
3.
Int J Biol Macromol ; 229: 463-475, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36563821

RESUMEN

Human awareness of the need for health and wellness practices that enhance disease resilience has increased as a result of recent health risks. Plant-derived polysaccharides with biological activity are good candidates to fight diseases because of their low toxicity. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides extract from different plant parts have been reported to possess significant biological activity such as anti-oxidant, anti-cancer, immunomodulatory, anti-diabetic, radioprotective and hepatoprotective. Several extraction and purification techniques have been used to isolate and characterize T. cordifolia polysaccharides. Along with hot-water extraction (HWE), other novel techniques like microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE) are used to extract T cordifolia polysaccharides. SFE is a revolutionary technology that gives the best yield and purity of low-molecular-weight polysaccharides. According to the findings, polysaccharides extracted and purified from T. cordifolia have a significant impact on their structure and biological activity. As a result, the methods of extraction, structural characterization, and biological activity of T. cordifolia polysaccharides are covered in this review. Research on T. cordifolia polysaccharides and their potential applications will benefit greatly from the findings presented in this review.


Asunto(s)
Tinospora , Humanos , Tinospora/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Polisacáridos/farmacología
4.
Crit Rev Food Sci Nutr ; 63(23): 6208-6234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35139704

RESUMEN

Black soybean (BS) is a nutritious legume that is high in proteins, essential amino acids, dietary fiber, vitamins, minerals, anthocyanins, phenolic acids, isoflavones, and flavones. Traditional approaches for extracting BS bioactive compounds are commonly employed because they are simple and inexpensive, but they use toxic solvents and have lower yields. As a result, new extraction techniques have been developed, such as microwave, ultrasound, and enzyme-assisted extraction. Modern approaches are less harmful to the environment, are faster, and produce higher yields. The major anthocyanin in the BS seed coat was discovered as cyanidin-3-O-glucoside, accounting for nearly 75% of the total anthocyanins. BS and its seed coat also contains phenolic acids (p-hydroxybenzoic, gallic, vanillin, syringic acid), isoflavones (daidzein, glycitein and genistein), flavones, flavonols, flavanones, and flavanols. Bioactive compounds present in BS exhibit antioxidant, anti-cancerous, anti-diabetic, anti-obesity, anti-inflammatory, cardio and neuroprotective activities. The characterization and biological activity investigation of these bioactive compounds has provided researchers and food manufacturers with valuable information for developing functional food products and nutraceutical ingredients. In this review, the nutritional makeup of BS is reviewed, and the paper seeks to provide an insight of bioactive compound extraction methods as well as bioactive compounds identified by various researchers. The biological activities of BS extracts and their potential applications in food products (noodles), biodegradable films (pH sensitive film), and therapeutic applications (wound healing and anti-inflammation) are also discussed in the study. Therefore, BS have enormous potential for use in developing functional foods and nutraceutical components. This is the first review of its sort to describe and explain various extraction methodologies and characterization of bioactives, as well as their biological activity recorded in diverse works of literature, making it possible for food manufacturers and scientists to get a quick overview.


Asunto(s)
Flavonas , Isoflavonas , Antocianinas/química , Glycine max/química , Fenoles/análisis , Suplementos Dietéticos , Antioxidantes/farmacología , Antioxidantes/química
5.
J Food Sci ; 87(10): 4289-4311, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36101019

RESUMEN

Functional food development is rapidly increasing as a result of consumer consciousness concerning healthy and nutritious foods. In turn, research exploring novel ingredients for formulating functional foods has been accelerated. Onion peel or skin is a byproduct obtained from onion processing that contains abundant phytochemicals, contributing to its antioxidant potential. The main focus of this review is to highlight different extraction techniques (both conventional and nonconventional) that can be implemented to extract the bioactive compounds from onion peel and assess their antioxidant activity. Furthermore, this review highlights the major areas for the application of onion peel and its extract as prospective functional ingredients, thus aiding in the preparation of designer foods with additional health benefits. The use of onion peel could also assist in redesigning popularly consumed processed foods, such as baked products, noodles or pasta, as packaging material, meat quality improvers, colorants, and juice clarifiers. This review serves as a preliminary document that can assist in exploring different ways of incorporating bioactive onion peels or skin into the functional food industry and concludes that future research can assist in the effective and efficient utilization of this resource.


Asunto(s)
Ingredientes Alimentarios , Cebollas , Cebollas/química , Antioxidantes , Alimentos Funcionales , Estudios Prospectivos , Extractos Vegetales/química
6.
Chin Med ; 17(1): 114, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175969

RESUMEN

BACKGROUND: A biennial or perennial plant of the Apiaceae family, Eryngium caeruleum M. Bieb. is traditionally used in medicine as an antitoxic, diuretic, digestive, anti-inflammatory and analgesic drug. This plant is widely distributed in temperate regions around the world. Young leaves of the plant are used in cooking as aromatic cooked vegetables in various local products in Iran. PURPOSE: The current review aimed to highlight complete and updated information about the Eryngium caeruleum species, regarding botanical, ethnopharmacological, phytochemical data, pharmacological mechanisms as well as some nutritional properties. All this scientific evidence supports the use of this species in complementary medicine, thus opening new therapeutic perspectives for the treatment of some diseases. METHODS: The information provided in this updated review is collected from several scientific databases such as PubMed/Medline, ScienceDirect, Mendeley, Scopus, Web of Science and Google Scholar. Ethnopharmacology books and various professional websites were also researched. RESULTS: The phytochemical composition of the aerial parts and roots of E. caeruleum is represented by the components of essential oil (EO), phenolic compounds, saponins, protein, amino acids, fiber, carbohydrates, and mineral elements. The antioxidant, antimicrobial, antidiabetic, antihypoxic, and anti-inflammatory properties of E. caeruleum have been confirmed by pharmacological experiments with extracts using in vitro and in vivo methods. The syrup E. caeruleum relieved dysmenorrhea as effectively as Ibuprofen in the blinded, randomized, placebo-controlled clinical study. CONCLUSION: Current evidence from experimental pharmacological studies has shown that the different bioactive compounds present in the species E. caeruleum have multiple beneficial effects on human health, being potentially active in the treatment of many diseases. Thus, the traditional uses of this species are supported based on evidence. In future, translational and human clinical studies are necessary to establish effective therapeutic doses in humans.

7.
Oxid Med Cell Longev ; 2022: 2451733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720184

RESUMEN

The prevalence of viral infections, cancer, and diabetes is increasing at an alarming rate around the world, and these diseases are now considered to be the most serious risks to human well-being in the modern period. There is a widespread practice in Asian countries of using papaya leaves (C. papaya L.) as herbal medicine, either alone or in combination with prescribed medications, to treat a variety of ailments. The importance of conducting the necessary descriptive studies in order to determine the safety of papaya leaf consumption is also emphasized in the context of their application in the healthcare sector. Electronic databases such as Google Scholar, Scopus, and PubMed were used to gather information on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The literature was gathered from publications on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The antidengue, anticancer, antidiabetic, neuroprotective, and anti-inflammatory effects of papaya leaves discussed in this article are supported by evidence from preclinical, in vivo, in vitro, and clinical trial studies, as well as from other sources. Leaves have been investigated for their mechanism of action as well as their potential to be used in the development of novel herbal products for the health business. According to the reports gathered, only a small number of research demonstrated that leaf extract at high concentrations was hazardous to certain organs. The collective literature reviewed in this review provides insights into the use of papaya leaves as a cure for epidemic diseases, highlighting the phytochemical composition and pharmacological attributes of papaya leaves, as well as the results of various preclinical and clinical studies that have been conducted so far on the subject. The review clearly demonstrates the successful medical evidence for the use of papaya leaf extracts in the healthcare system as a supplemental herbal medication in a variety of clinical settings.


Asunto(s)
Carica , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Carica/química , Humanos , Fitoquímicos , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta
8.
Biomed Pharmacother ; 146: 112498, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34953395

RESUMEN

Huge quantities of byproducts/wastes generated in onion processing are usually discarded, but they are excellent sources of bioactive compounds and phytochemicals. However, with growing interest in the sustainable use of resources and the circular economy to reduce adverse impacts on the environment, food processing wastes such as onion peel/skin can be extracted and employed as inputs in developing or reformulating nutrient supplements, and pharmacological drugs. This review highlights major bioactive components, especially total phenolics, total flavonoid, quercetin and its derivatives present in onion peel/skin and their therapeutic applications as cardioprotective, neuroprotective, antiobesity, antidiabetic, anticancer and antimicrobial agents. The present review emphasized that onion peel is one of the important agricultural by-products which is rich in bioactive compounds and can be utilized as health promoting ingredient especially in pharmacological and biomedical fields. Thus, with increasing burden of life style disorders/non-communicable diseases, finding suitable natural alternative for their treatment is one major concern of the researchers and onion peel and its extract can be exploited as a prime ingredient.


Asunto(s)
Cebollas/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Fármacos Antiobesidad/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Cardiotónicos/farmacología , Flavonoides/farmacología , Hipoglucemiantes/farmacología , Fármacos Neuroprotectores/farmacología , Fenoles/farmacología
9.
Biomolecules ; 11(5)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919068

RESUMEN

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


Asunto(s)
Annona/química , Annona/metabolismo , Fitoquímicos/análisis , Alcaloides/análisis , Alcaloides/química , Annona/efectos de los fármacos , Antiinfecciosos , Antioxidantes/farmacología , Flavonoides/análisis , Flavonoides/química , Humanos , Hipoglucemiantes/análisis , Fenoles/análisis , Fenoles/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA