Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 9992, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705587

RESUMEN

A field survey was conducted on five fish farms to trace glyphosate and malathion pollution with some physicochemical parameters. A precise half-life time, LC50-96h, of these agrochemicals on Oreochromis niloticus, as well as chronic exposure with organic selenium (OS) supplementation, were experimentally investigated. Oreochromis niloticus was subjected to the following: (negative control); (2 mg L-1 glyphosate); (0.5 mg L-1 malathion); (glyphosate 1.6 mg L-1 and 0.3 mg L-1 malathion); (glyphosate 2 mg L-1 and OS 0.8 g kg-1 diet); (malathion 0.5 mg L-1 and OS 0.8 g kg-1 diet) and (glyphosate 1.6 mg L-1; malathion 0.3 mg L-1 and OS 0.8 g kg-1 diet). Furthermore, data from the analyzed pond revealed a medium risk quotient (RQ) for both agrochemicals. The detected agrochemicals were related to their application, and vegetation type surrounding the farms, also their biodegradation was correlated to water pH, temperature, and salinity. Glyphosate and malathion had half-lives of 2.8 and 2.3 days and LC50-96h of 2.331 and 0.738 mg L-1, respectively. The severest nervous symptoms; increased oxidative stress markers, as well as high bacterial count in the livers and kidneys of fish challenged with Aeromonas hydrophila, were observed in the combined exposure, followed by a single exposure to malathion and then glyphosate. Organic selenium mitigated these impacts.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Selenio , Agroquímicos/metabolismo , Alimentación Animal/análisis , Animales , Cíclidos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Enfermedades de los Peces/microbiología , Glicina/análogos & derivados , Malatión/toxicidad , Medición de Riesgo , Selenio/metabolismo , Glifosato
2.
BMC Vet Res ; 18(1): 159, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35501865

RESUMEN

BACKGROUND: Pesticide exposure is thought to be a major contributor to living organism health deterioration, as evidenced by its impact on both cultured fish species and human health. Commercial fish diets are typically deficient in selenium (Se); hence, supplementation may be necessary to meet requirements during stress. Therefore, this study was conducted to investigate the protective role of selenium yeast (SY) supplementation for 60 days against the deleterious effects of glyphosate and or malathion chronic toxicity at sublethal concentrations in Oreochromis niloticus . METHODS: Two hundred and ten fish were divided into seven groups (n = 30/group) as follows: G1 (negative control); G2 (2 mg L- 1 glyphosate); G3 (0.5 mg L- 1 malathion); G4 (glyphosate 1.6 mg L- 1 and malathion 0.3 mg L- 1); G5 (glyphosate 2 mg L- 1 and SY 3.3 mg kg- 1); G6 (malathion 0.5 mg L- 1 and SY 3.3 mg kg- 1); and G7 (glyphosate 1.6 mg L- 1; malathion 0.3 mg L- 1 and SY 3.3 mg kg- 1). RESULTS: Results revealed significant alteration in growth performance parameters including feed intake (FI), body weight (BW), body weight gain (BWG), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER). G4 has the highest documented cumulative mortalities (40%), followed by G3 (30%). Additionally, the greatest impact was documented in G4, followed by G3 and then G2 as severe anemia with significant thrombocytopenia; leukocytosis; hypoproteinemia; increased Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST), urea, and creatinine, as well as malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Considering the previously mentioned parameters, selenium yeast (Saccharomyces cerevisiae) (3.3 mg kg- 1 available selenium) mitigated the negative impact of both the agrochemicals, whether exposed singly or in combination, in addition to their antioxidative action. CONCLUSIONS: In conclusion, our study found that organophosphorus agrochemicals, single or combined, had negative impacts on Oreochromis niloticus regarding growth performance, biochemical and hematological changes in the serum, as well as induced oxidative damage in liver and kidney tissues. Supplementation of SY at the rate of 3.3 mg kg- 1 diet (2.36 mg kg- 1 selenomethionine and 0.94 mg organic selenium) ameliorated the fish performance and health status adversely affected by organophosphorus agrochemical intoxication.


Asunto(s)
Cíclidos , Selenio , Levadura Seca , Agroquímicos/metabolismo , Animales , Antioxidantes/metabolismo , Peso Corporal , Glicina/análogos & derivados , Malatión/toxicidad , Saccharomyces cerevisiae/metabolismo , Selenio/metabolismo , Selenio/farmacología , Glifosato
3.
Environ Toxicol Pharmacol ; 69: 44-50, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30953933

RESUMEN

Industrial products contained nano-zinc oxide (ZnONP) can gain access to the aquaculture environment causing hazardous effects on the living biota. Therefore, this work was planned to examine the ameliorative effects of dietary supplementation of lycopene (LYC) and/or resveratrol (RES) against ZnONP toxicity in Nile tilapia. Five groups with 20 fish each were used; Control, received tap water only; ZnONP group, was intoxicated with ZnONP (50 mg/L); ZnONP-LYC group, was exposed to ZnONP and LYC (500 mg/ kg of the diet); ZnONP-RES group, was exposed to ZnONP and RES (50 mg/kg of the diet); ZnONP-LYC-RES group, was exposed to ZnONP and a combination of LYC and RES. The experiment was continued for 30 days. Fish blood and tissues were then assembled for determination of liver and kidney function and oxidative stress status in liver, kidney, and gills tissue. Results revealed a considerable elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), cholesterol, urea, and creatinine with a noticeable lowering of total proteins and albumin serum levels in response to ZnONP intoxication. In addition, there were significant increase in malondialdehyde (MDA) and reduction in the reduced-glutathione (GSH) levels and superoxide dismutase (SOD) and catalase (CAT) activities. However, treatment with LYC and/or RES ameliorated the ZnONP-inflicted oxidative stress which possibly attributed to their beneficial antioxidant activities.


Asunto(s)
Antioxidantes/farmacología , Suplementos Dietéticos , Licopeno/farmacología , Nanopartículas/toxicidad , Resveratrol/farmacología , Óxido de Zinc/toxicidad , Animales , Cíclidos , Branquias/efectos de los fármacos , Branquias/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos
4.
Environ Toxicol Pharmacol ; 54: 99-104, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28704756

RESUMEN

The current study was performed to investigate the ameliorating effect of dietary supplementation of 0.5 and 1% Spiurolina platensis (SP) diet against the sub-acute toxicity of diazinon (DZN) 0.28mg/L in Nile tilapia. At the end of experiment after 28days, hepatic and renal damage markers (aspartate transaminase, alanine transaminase, alkaline phosphatase, urea, uric acid and creatinine), serum biochemical parameters (total proteins, albumin, cholesterol and glucose) and tissue antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione and malondialdehyde) were detesrmined. The results of the current study revealed significant improvement in hepatic and renal damage markers after SP supplementation in fish exposed to DZN toxicity. Moreover, SP improved serum biochemical markers through increasing serum albumin and globulins with a significant decrease in serum glucose and cholesterol. In addition, liver, kidneys and gills antioxidant status showed a significant improvement after SP supplemented to fish exposed to DZN where a significant increase in tissue antioxidant activity were observed with a significant decline in lipid peroxidation levels. It can be concluded that, SP supplementation attenuated the toxic effect of DZN toxicity in Nile tilapia through improving liver and kidney functions with a significant enhancement of tissue antioxidant status.


Asunto(s)
Antioxidantes , Cíclidos/metabolismo , Diazinón/toxicidad , Insecticidas/toxicidad , Spirulina , Alanina Transaminasa/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Antioxidantes/farmacología , Aspartato Aminotransferasas/metabolismo , Catalasa/metabolismo , Creatinina/metabolismo , Dieta , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Urea/metabolismo , Ácido Úrico/metabolismo
5.
Biomed Pharmacother ; 77: 79-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26796269

RESUMEN

Spirulina platensis (SP); a microalga with high antioxidant and anti-inflammatory activities, acts as a food supplement in human and as many animal species. Deltamethrin (DLM) is a synthetic pyrethroid with broad spectrum activities against acaricides and insects and widely used for veterinary and agricultural purposes. Exposure to DLM leads to hepatotoxic, nephrotoxic and neurotoxic side effects for human and many species, including birds and fish. The present study was undertaken to examine the potential hepatoprotective, nephroprotective, neuroprotective and antioxidant effects of SP against sub-acute DLM toxicity in male mice. DLM intoxicated animals revealed a significant increase in serum hepatic and renal injury biomarkers as well as TNF-α level and AChE activity. Moreover, liver, kidney and brain lipid peroxidation and oxidative stress markers were altered due to DLM toxicity. Spirulina normalized the altered serum levels of AST, ALT, APL, LDH, γ-GT, cholesterol, uric acid, urea, creatinine AChE and TNF-α. Furthermore, it reduced DLM-induced tissue lipid peroxidation, nitric oxide and oxidative stress in a dose-dependent manner. Collectively, that Spirulina supplementation could overcome DLM-induced hepatotoxicty, nephrotoxicity and neurotoxicity by abolishing oxidative tissue injuries.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Fármacos Neuroprotectores/farmacología , Nitrilos/toxicidad , Piretrinas/toxicidad , Spirulina , Acetilcolinesterasa/biosíntesis , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Suplementos Dietéticos , Riñón/efectos de los fármacos , Riñón/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Factor de Necrosis Tumoral alfa/biosíntesis
6.
Eur J Med Chem ; 94: 30-44, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25768697

RESUMEN

A new series of pyrazole derivatives were synthesized by hybridization with five-membered heterocyclic moieties such as thiazoles, thiazolidinones, 1,3,4-thiadiazoles and pyrazolines. The compounds were evaluated for their in vivo antimalarial activity against Plasmodium berghei infected mice and the most active derivatives were further examined for their in vitro antimalarial activity against chloroquine resistant (RKL9) strain of Plasmodium falciparum. Compounds 2c, 2d, 4b, 4c, 4d, 5a, 6c, 8c and 9b had more than 90% parasite suppression activity of that found with the antimalarial reference standard drug, chloroquine phosphate and had lower IC50 values than chloroquine. Compounds 4b and 9b were the most active derivatives, and their activities were 5-fold higher than chloroquine. All the newly synthesized compounds were evaluated for their in vitro antileishmanial activity against Leishmania aethiopica promastigotes and amastigote. The results showed that compounds 2c, 2d, 3d, 4b, 4c, 4d and 5a had lower or similar IC50 values than the reference standard drugs, amphotericin B and miltefosine. Compound 3d had the highest antileishmanial activity. Collectively, compounds 2c, 2d, 4b, 4c, 4d and 5a exhibited dual activity against malaria and leishmaniasis and were safe and well tolerated by the experimental animals orally up to 300 mg/kg and parenterally up to 100 mg/kg.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Tripanocidas/farmacología , Animales , Antimaláricos/síntesis química , Técnicas de Química Sintética , Cloroquina/análogos & derivados , Cloroquina/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Femenino , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Concentración 50 Inhibidora , Leishmania/efectos de los fármacos , Leishmania/patogenicidad , Leishmaniasis/tratamiento farmacológico , Malaria/tratamiento farmacológico , Masculino , Ratones , Simulación del Acoplamiento Molecular , Plasmodium berghei/patogenicidad , Plasmodium falciparum/efectos de los fármacos , Pirazoles/química , Tripanocidas/síntesis química , Tripanocidas/química
7.
Brain Behav Immun ; 44: 106-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25218901

RESUMEN

Toll-like receptors (TLRs) and nuclear-binding domain (NOD)-like receptors (NLRs) are sensors of bacterial cell wall components to trigger an immune response. The TLR4 agonist lipopolysaccharide (LPS) is a strong immune activator leading to sickness and depressed mood. NOD agonists are less active but can prime immune cells to augment LPS-induced cytokine production. Since the impact of NOD and TLR co-activation in vivo has been little studied, the effects of the NOD1 agonist FK565 and the NOD2 agonist muramyl dipeptide (MDP), alone and in combination with LPS, on immune activation, brain function and sickness behavior were investigated in male C57BL/6N mice. Intraperitoneal injection of FK565 (0.001 or 0.003mg/kg) or MDP (1 or 3mg/kg) 4h before LPS (0.1 or 0.83mg/kg) significantly aggravated and prolonged the LPS-evoked sickness behavior as deduced from a decrease in locomotion, exploration, food intake and temperature. When given alone, FK565 and MDP had only minor effects. The exacerbation of sickness behavior induced by FK565 or MDP in combination with LPS was paralleled by enhanced plasma protein and cerebral mRNA levels of proinflammatory cytokines (IFN-γ, IL-1ß, IL-6, TNF-α) as well as enhanced plasma levels of kynurenine. Immunohistochemical visualization of c-Fos in the brain revealed that NOD2 synergism with TLR4 resulted in increased activation of cerebral nuclei relevant to sickness. These data show that NOD1 or NOD2 synergizes with TLR4 in exacerbating the immune, sickness and brain responses to peripheral immune stimulation. Our findings demonstrate that the known interactions of NLRs and TLRs at the immune cell level extend to interactions affecting brain function and behavior.


Asunto(s)
Encéfalo/inmunología , Conducta de Enfermedad/fisiología , Proteína Adaptadora de Señalización NOD1/fisiología , Proteína Adaptadora de Señalización NOD2/fisiología , Receptor Toll-Like 4/fisiología , Acetilmuramil-Alanil-Isoglutamina/farmacología , Adyuvantes Inmunológicos/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Corticosterona/sangre , Citocinas/sangre , Citocinas/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Conducta de Enfermedad/efectos de los fármacos , Quinurenina/sangre , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Proteína Adaptadora de Señalización NOD1/agonistas , Proteína Adaptadora de Señalización NOD2/agonistas , Oligopéptidos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Receptor Toll-Like 4/agonistas , Triptófano/sangre
8.
Ecotoxicol Environ Saf ; 111: 146-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450927

RESUMEN

Allicin, the main biologically active component of garlic clove extracts, has been evaluated for its' efficacy in preventing deltamethrin-induced oxidative damage in Nile tilapia; Oreochromis niloticus. Fish were fed on 2 different doses of 0.5 g and 1 g of allicin/kg diet for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), cholesterol, urea, uric acid, creatinine, total protein, albumin and globulin were estimated. Moreover, the level of malonaldehyde (MDA) was analyzed as a lipid peroxidation marker. In addition, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) were analyzed as antioxidant biomarkers in liver, kidney and gills. Results show that deltamethrin subacute intoxication (1.46 µg/L for 28 days) increased serum AST, ALT, ALP, cholesterol, urea, uric acid, creatinine and tissue MDA. At the same time, serum total protein and albumin as well as tissue level of GSH, GSH-Px, SOD and CAT were reduced. Allicin supplemented diets enhanced all the altered serum biochemical parameters as well as tissues' lipid peroxidation and antioxidant biomarkers in a dose-dependent manner. The results suggest that feeding allicin can ameliorate deltamethrin-induced oxidative stress and might have some therapeutic properties to protect Nile tilapia on subacute deltamethrin toxicity.


Asunto(s)
Cíclidos , Insecticidas/toxicidad , Nitrilos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Piretrinas/toxicidad , Ácidos Sulfínicos/farmacología , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalasa/metabolismo , Cíclidos/metabolismo , Dieta , Disulfuros , Branquias/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Riñón/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA