Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicon ; 214: 62-73, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35597521

RESUMEN

Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin that induces severe health disturbances in humans and animals. This study aimed to determine the bioactive compounds in Costus speciosus extract (CSE) using GC-MS and evaluate its protective capability against ZEN-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Six groups of male Sprague Dawley rats were treated orally for 15 days including the control group, CSE-treated groups at low (200 mg/kg b. w) or high (400 mg/kg b. w) dose, ZEN-treated group (40 µg/kg b. w), and the groups treated with ZEN plus the low or the high dose of CSE. Blood and tissue samples were collected for different assays and pathological analyses. The results of GC-MS indicated the identification of 6 compounds and Azulene was the major. Animals that received ZEN showed severe disturbances in serum biochemical, cytokines, oxidative stress indicators, mRNA expression of iNOS, Nrf2, and inflammatory-related genes. ZEN also increased micronucleated polychromatic erythrocytes (MNPCEs) and comet tail formation in bone marrow cells along with the disturbances in the histological architecture of the liver and kidney. Co-administration of CSE plus ZEN could normalize the majority of the tested parameters and the histological picture at a dose as low as 200 mg/kg b. w. Therefore, CSE protects against ZEN toxicity via its antioxidant activity, modulation of iNOS, inflammatory-related genes, and the Nrf2 pathway and it could be used in the endemic regions.


Asunto(s)
Costus , Citocinas , Estrés Oxidativo , Extractos Vegetales , Zearalenona , Animales , Costus/química , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Zearalenona/toxicidad
2.
Heliyon ; 7(7): e07537, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34345731

RESUMEN

The application of essential oils in food and pharmaceutical sectors face several challenges due to their sensitivity to oxidation process. Additionally, the biosynthesis of nanometals is growing rapidly; however, the toxicity of these particles against living organisms did not well explore yet. This study aimed to determine the bioactive compounds in basil essential oil (BEO) using GC-MS, to encapsulate and characterize BEO and to evaluate its protective role against the oxidative stress and genotoxicity of biosynthesized iron nanoparticles (Fe-NPs) in rats. Six groups of male Sprague-Dawley rats were treated orally for 4 weeks included the control group, Fe-NPs-treated group (100 mg/kg b.w.); EBEO-treated groups at low (100 mg/kg b.w.) or high (200 mg/kg b.w.) dose and the groups treated with Fe-NPs plus the low or the high dose of EBEO. The GC-MS analysis revealed the identification of 48 compounds and linalool was the major compound. The average sizes and zeta potential of the synthesized Fe-NPs and EBEO were 60 ± 4.76 and 120 ± 3.2 nm and 42.42 mV and -6.4 mV, respectively. Animals treated with Fe-NPs showed significant increase in serum biochemical analysis, oxidative stress markers, cytokines, lipid profile, DNA fragmentation and antioxidant enzymes and their gene expression and severe changes in the histology of liver and kidney tissues. Administration of Fe-NPs plus EBEO alleviated these disturbances and the high dose could normalize most of the tested parameters and improved the histology of liver and kidney. It could be concluded that caution should be taken in using the biosynthesized metal nanoparticles in different application. EBEO is a potent candidate to protect against the hazards of metal nanoparticles and can be applied in food and medical applications.

3.
Environ Sci Pollut Res Int ; 28(37): 52046-52063, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33999325

RESUMEN

Although the green synthesis of nanometals is eco-friendly, the toxicity or safety of these biosynthesized nanoparticles in living organisms is not fully studied. This study aimed to evaluate the potential protective role of encapsulated thyme oil (ETO) against zinc oxide nanoparticles (ZnO-NPs). ETO was prepared using a mixture of whey protein isolate, maltodextrin, and gum Arabic, and ZnO-NPs were synthesized using parsley extract. Six groups of male Sprague-Dawley rats were treated orally for 21 days which included the control group, ZnO-NP-treated group (25 mg/kg body weight (b.w.)), ETO-treated groups at low or high dose (50, 100 mg/kg b.w.), and the groups that received ZnO-NPs plus ETO at the two tested doses. Blood and tissue samples were collected for different assays. The results showed that carvacrol and thymol were the major components in ETO among 13 compounds isolated by GC-MS. ZnO-NPs were nearly spherical and ETOs were round in shape with an average size of 38 and 311.8 nm, respectively. Administration of ZnO-NPs induced oxidative stress, DNA damage, biochemical, ctyogentical, and histological changes in rats. ETO at the tested doses alleviated these disturbances and showed protective effects against the hazards of ZnO-NPs. It could be concluded that encapsulation of thyme oil using whey protein isolate, maltodextrin, and gum Arabic improved the antioxidant properties of ETO, probably possess synergistic effects, and can be used as a promising tool in pharmaceutical and food applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Aceites Volátiles , Thymus (Planta) , Óxido de Zinc , Animales , Nanopartículas del Metal/toxicidad , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Óxido de Zinc/toxicidad
4.
Environ Sci Pollut Res Int ; 28(12): 15185-15195, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33226557

RESUMEN

Pyrethroids are synthetic chemicals similar to the pyrethrins, but more toxic to insects and mammals and persistent in the environment than pyrethrins. This study aimed to identify the bioactive compounds of Amphora coffeaeformis extract (ACE) and to determine their potential protective activity against deltamtherin (DEL) insecticide in rats. Six groups of male albino rats were treated for 4 weeks included the control group, ACE-treated group (772 mg/kg b.w.), DEL-exposed group (13.5 mg/kg b.w.), DEL plus ACE-treated group, and the groups treated with ACE for 14 days before or after DEL. At the end of treatment, blood and tissue samples were collected for biochemical assays. The GC-MS identified 18 compounds; most of them are fatty acid methyl ester, and the HPLC identified 8 polyphenols and significant amounts of vitamins A, C, B1, B2, B9, and E. The in vivo results revealed that DEL induced significant alterations in hematological and serum biochemical parameters, oxidative stress markers, proinflammatory cytokines, and NF-κB. ACE protects against DEL toxicity, and the protection was more pronounced in the groups treated with ACE plus DEL or ACE after DEL suggesting that ACE could be used for the prevention or the treatment of DEL toxicity. It could be concluded that ACE is a promising candidate for the production of bioactive compounds and should be considered in the pharmaceutical and food application.


Asunto(s)
Piretrinas , Animales , Antioxidantes , Masculino , Nitrilos/toxicidad , Estrés Oxidativo , Extractos Vegetales/farmacología , Piretrinas/toxicidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA