Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Iran J Public Health ; 51(6): 1223-1231, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36447978

RESUMEN

Background: Irritable bowel syndrome (IBS) is a highly prevalent disorder of the gut interaction characterized by abdominal discomfort and pain associated with altered bowel habits in the absence of structural abnormalities. In spite of IBS' high prevalence and disease burden across the globe, no explanations have been given as to its underlying pathophysiology. As for the treatment of IBS, there is no specific medication, and the most beneficial treatment is usually supportive therapy. Recent animal and human studies have demonstrated the therapeutic potential of curcumin or turmeric in the treatment of IBS. Methods: We systematically reviewed all available evidence supporting curcumin and turmeric's therapeutic potential in relieving IBS symptoms in the present study. For this purpose, a database search was performed using curcumin, turmeric, and IBS and all their equivalents as of the search terms in Web of Science, Pub-Med, Scopus, Ovid, Embase, and Google Scholar from1990 up to Feb 2021. The investigation was then limited to clinical trials, and then nine articles were collected for data analysis. Results: The findings of the included literature showed that curcumin and turmeric alone or in combination with other medications could improve the severity of IBS as well as the quality of life among people who suffer from IBS symptoms. Conclusion: Overall, medications containing curcumin and turmeric extract due to these compounds' anti-inflammatory effects may improve IBS symptoms, particularly abdominal pain and life quality.

2.
Phytother Res ; 34(3): 526-545, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31793087

RESUMEN

Obesity is a medical situation in which excess body fat has gathered because of imbalance between energy intake and energy expenditure. In spite of the fact that the variety of studies are available for obesity treatment and management, its "globesity" still remains a big challenge all over the world. The current systematic review and meta-analysis aimed to evaluate the efficacy, safety, and mechanisms of effective herbal medicines in the management and treatment of obesity and metabolic syndrome in human. We systematically searched all relevant clinical trials via Web of Science, Scopus, PubMed, and the Cochrane database to assess the effects of raw or refined products derived from plants or parts of plants on obesity and metabolic syndrome in overweight and obesity adult subjects. All studies conducted by the end of May 2019 were considered in the systematic review. Data were extracted independently by two experts. The quality assessment was assessed using Consolidated Standards of Reporting Trials checklist. The main outcomes were anthropometric indices and metabolic syndrome components. Pooled effect of herbal medicines on obesity and metabolic syndrome were presented as standardized mean difference (SMD) and 95% confidence interval (CI). A total of 279 relevant clinical trials were included. Herbals containing green tea, Phaseolus vulgaris, Garcinia cambogia, Nigella sativa, puerh tea, Irvingia gabonensis, and Caralluma fimbriata and their active ingredients were found to be effective in the management of obesity and metabolic syndrome. In addition, C. fimbriata, flaxseed, spinach, and fenugreek were able to reduce appetite. Meta-analysis showed that intake of green tea resulted in a significant improvement in weight ([SMD]: -0.75 [-1.18, -0.319]), body mass index ([SMD]: -1.2 [-1.82, -0.57]), waist circumference ([SMD]: -1.71 [-2.66, -0.77]), hip circumference ([SMD]: -0.42 [-1.02, -0.19]), and total cholesterol, ([SMD]: -0.43 [-0.77, -0.09]). In addition, the intake of P. vulgaris and N. sativa resulted in a significant improvement in weight ([SMD]: -0.88, 95 % CI: [-1.13, -0.63]) and triglyceride ([SMD]: -1.67, 95 % CI: [-2.54, -0.79]), respectively. High quality trials are still needed to firmly establish the clinical efficacy of the plants in obesity and metabolic syndrome.


Asunto(s)
Síndrome Metabólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Plantas Medicinales , , Triglicéridos/análisis , Adulto , Apetito/efectos de los fármacos , Índice de Masa Corporal , Peso Corporal/efectos de los fármacos , Humanos , Sobrepeso/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Circunferencia de la Cintura/efectos de los fármacos
3.
J Cell Biochem ; 120(4): 6209-6222, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30474871

RESUMEN

Aging contributes to an increased risk of developing a number of neurodegenerative and chronic disorders, predominantly related to oxidative stress (OS) and defects in the antioxidant balance. This study focused on the antisenescence effect of four plant species (Falcaria vulgaris, Ixiolirion tataricum, Ajuga chamaecistus, and Scabiosa flavida) on H2 O2 -induced premature senescence in rat NIH3T3 fibroblasts, which were found to be rich in effective phytochemicals with traditional ethnobotanical backgrounds. Plant materials were collected, identified, and extracted. To determine the viability of NIH3T3 cells, an MTT assay was conducted. The levels of OS markers and the senescence-associated ß-galactosidase (SA-ß-GAL) activity were analyzed by the Elisa reader. The cell cycle pattern was evaluated by flow cytometry. The expression of senescence-related inflammatory cytokines and the molecules involved in aging signaling pathways were investigated using the real-time reverse transcription polymerase chain reaction (RT-PCR). H2 O2 treatment decreased cell viability and increased lipid peroxidation (LPO) and the reactive oxygen species (ROS) in NIH3T3s. However, S. flavida exhibited low cytotoxicity, reduced OS and SA-ß-GAL activities in NIH3T3 cells compared with the H2 O2 -treated group. I. tataricum was the second best plant, although it was more toxic to NIHT3T cells. S. flavida decreased G0/G1 arrest and facilitated the G2/M transition of NIH3T3s, also downregulated the expression of p38, p53, p16, and the related inflammatory mediators. S. flavida potentially modulated senescence-associated hallmarks in fibroblasts exposed to H2 O2 , thus it may inhibit the aging process via controlling the OS. Therefore it is a promising candidate for future antiaging explorations.


Asunto(s)
Fibroblastos/citología , Peróxido de Hidrógeno/efectos adversos , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/farmacología , Animales , Apiaceae/química , Asparagales/química , Ciclo Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Dipsacaceae/química , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Lamiaceae/química , Ratones , Células 3T3 NIH , Especies Reactivas de Oxígeno/metabolismo
4.
Pharmacol Res ; 130: 241-258, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29258915

RESUMEN

Over the last decades, an exponential increase of efforts concerning the treatment of Alzheimer's disease (AD) has been practiced. Phytochemicals preparations have a millenary background to combat various pathological conditions. Various cinnamon species and their biologically active ingredients have renewed the interest towards the treatment of patients with mild-to-moderate AD through the inhibition of tau protein aggregation and prevention of the formation and accumulation of amyloid-ß peptides into the neurotoxic oligomeric inclusions, both of which are considered to be the AD trademarks. In this review, we presented comprehensive data on the interactions of a number of cinnamon polyphenols (PPs) with oxidative stress and pro-inflammatory signaling pathways in the brain. In addition, we discussed the potential association between AD and diabetes mellitus (DM), vis-à-vis the effluence of cinnamon PPs. Further, an upcoming prospect of AD epigenetic pathophysiological conditions and cinnamon has been sighted. Data was retrieved from the scientific databases such as PubMed database of the National Library of Medicine, Scopus and Google Scholar without any time limitation. The extract of cinnamon efficiently inhibits tau accumulations, Aß aggregation and toxicity in vivo and in vitro models. Indeed, cinnamon possesses neuroprotective effects interfering multiple oxidative stress and pro-inflammatory pathways. Besides, cinnamon modulates endothelial functions and attenuates the vascular cell adhesion molecules. Cinnamon PPs may induce AD epigenetic modifications. Cinnamon and in particular, cinnamaldehyde seem to be effective and safe approaches for treatment and prevention of AD onset and/or progression. However, further molecular and translational research studies as well as prolonged clinical trials are required to establish the therapeutic safety and efficacy in different cinnamon spp.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Cinnamomum zeylanicum , Fármacos Neuroprotectores/uso terapéutico , Preparaciones de Plantas/uso terapéutico , Enfermedad de Alzheimer/genética , Animales , Encéfalo/metabolismo , Cognición/efectos de los fármacos , Epigenómica , Humanos , Fármacos Neuroprotectores/farmacología , Preparaciones de Plantas/farmacología
5.
In Vitro Cell Dev Biol Anim ; 49(9): 706-15, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23949776

RESUMEN

Many of CNS diseases can lead to a great quantity of release of glutamate and the extreme glutamate induces neuronal cell damage and death. Here, we wanted to investigate the effects of Cymbopogon citratus essential oil and Ferula assa-foetida extracts treatment on glutamate-induced cell damage in a primary culture of rat cerebellar granule neurons. Cerebellums were collected from 7-d rat brains and cerebellar granule neurons were obtained after 8-d culture. CGN cells were treated with C. citratus essential oil and F. assa-foetida extracts at concentration of 100 µg/ml before, after, and during exposure to 30 µM glutamate. The cellular viability was evaluated by 3-(4, 5-dimethytthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) staining. The flow cytometry assay was used to examine cell cycle and apoptosis. MTT assay showed a glutamate-induced reduction in cellular viability while treatment with C. citratus essential oil and F. assa-foetida extracts before, during, and after exposure to glutamate was increased. Flow cytometric analysis indicated that F. assa-foetida extracts treatment significantly (p < 0.001) attenuated glutamate-induced apoptotic/necrotic cell death and the necrotic rate was decreased by C. citratus essential oil treatment compared to glutamate group, significantly (p < 0.001). The results show that C. citratus essential oil and F. assa-foetida extracts display neuroprotective effects in glutamate-induced neurotoxicity. These extracts exert antiapoptotic activity in cerebellar granule neurons due to cell cycle arrest in G0G1 phase, which explain the beneficial effects of C. citratus essential oil and F. assa-foetida extracts as therapies for neurologic disorders.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Cerebelo/efectos de los fármacos , Ácido Glutámico/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cerebelo/citología , Cymbopogon/química , Ferula/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/patología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Ratas
6.
Food Chem Toxicol ; 50(3-4): 1054-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22119783

RESUMEN

Plants as important source of natural active components with anticancer effects commonly are different in structure and biological properties. The pericarp of Pistacia atlantica sub kurdica with local name of Baneh, a rich source of active phytochemicals, contains noticeable amounts of polyphenolic compounds, flavonoids and anthocyanins. Therefore, the antiproliferative, apoptosis induction and cell cycle alterations of Baneh were evaluated in human colon carcinoma HT29 cells. The Baneh extract (0.7 mg/ml) resulted in 50% growth inhibition similar to 500 nM of Doxorubicin (Dox) in HT29 cells after 72 h. The down-regulation of cyclin A protein by Baneh extract induced S phase delay in cell cycle progression of HT29 cells. Unlike the Baneh extract, Dox showed G2/M accumulation of HT29 cells which was associated with an increase in cyclin A and cyclin B1 protein expression. Furthermore, the induction of apoptosis following Baneh extract and Dox treatment in HT29 cells was confirmed by DNA fragmentation and translocation of phosphatidylserine. The morphological characteristics of apoptosis were also observed in HT29 cells exposed to the Baneh extract and Dox. These results suggest that due to the existence of bioactive components, methanolic extract of the Baneh has significant cytotoxic effects against human colon carcinoma HT29 cells.


Asunto(s)
Anacardiaceae/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Neoplasias del Colon/patología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Western Blotting , Neoplasias del Colon/metabolismo , Ciclina A/metabolismo , Ciclina B1/metabolismo , Fragmentación del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Células HT29 , Humanos
7.
Toxicol Mech Methods ; 20(9): 538-43, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20919798

RESUMEN

The present work was designed to examine the effect of a new (25)Mg(2+)-carrying nanoparticle (PMC16) on energy and oxidative stress parameters inside the heart of the rats exposed to acute mild toxic dose of malathion, a widely used organophosphate. Post a single intraperitoneal (ip) injection of malathion (0.25 of LD50), PMC16 at different doses (0.05, 0.1, and 0.2 of LD50) was administered intravenously (iv) as a supplement to standard therapy of atropine and pralidoxime. MgSO(4) was used as another supplement for comparison with PMC16. Oxidative stress biomarkers including lipid peroxidation (LPO) and reactive oxygen species (ROS), antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), ATP/ADP ratio, and Mg in the cardiac cells were determined. Results indicated a significant increase in LPO, ROS, ADP/ATP ratio, and a decrease in Mg post-malathion poisoning in comparison to controls. All of these parameters were improved by use of standard therapy either with MgSO4 or various doses of PMC16. The activities of SOD, CAT, and GPx did not change significantly in the present acute malathion poisoning model and neither MgSO(4) or PMC16 had no considerable improvement on these parameters. Comparing groups that received normal Mg and those of various doses of PMC16, a significant difference was found with the PMC16 (0.2 LD50) group. PMC16 0.2 reduced cardiac cells LPO and ROS of Mal-exposed animals rather than that of MgSO4. PMC16 0.2 was also significantly better than MgSO(4) in improving MAL-induced changes in ADP/ATP ratio and also intracellular Mg levels. This study illustrates that malathion-induced cardiac cells toxicity is improved by administration of Mg as a result of increasing cardiac ATP through active transport of Mg inside the cells. Finally, the results of this study support positive effects of this magnetic Mg nanoparticle carrier but do not confirm its absolute efficacy that remains to be explored by further tests in different animal models and organs before moving to a phase I human trial.


Asunto(s)
Corazón/efectos de los fármacos , Magnesio/farmacología , Nanopartículas del Metal , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Sustancias Protectoras/farmacología , Animales , Metabolismo Energético/efectos de los fármacos , Radicales Libres/metabolismo , Insecticidas/antagonistas & inhibidores , Insecticidas/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Magnetismo , Malatión/antagonistas & inhibidores , Malatión/toxicidad , Masculino , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA