Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 14726, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282188

RESUMEN

Despite progress in the use of hyperthermia in clinical practice, the thermosensitivity of cancer cells is poorly understood. In a previous study, we found that sensitivity to hyperthermia varied between ovarian and uterine cancer cell lines. Upon hyperthermia, glycolytic enzymes decreased in hyperthermia-resistant SKOV3 cells. However, the mechanisms of glycolysis inhibition and their relationship with thermoresistance remain to be explored. In this study, metabolomic analysis indicated the downregulation of glycolytic metabolites in SKOV3 cells after hyperthermia. Proteomic and pathway analyses predicted that the ubiquitin pathway was explicitly activated in resistant SKOV3 cells, compared with hyperthermia-sensitive A2780 cells, and STUB1, a ubiquitin ligase, potentially targeted PKM, a glycolytic rate-limiting enzyme. PKM is degraded via ubiquitination upon hyperthermia. Although glycolysis is inactivated by hyperthermia, ATP production is maintained. We observed that oxygen consumption and mitochondrial membrane potential were activated in SKOV3 cells but suppressed in A2780 cells. The activation of mitochondria could compensate for the loss of ATP production due to the suppression of glycolysis by hyperthermia. Although the physiological significance has not yet been elucidated, our results demonstrated that metabolomic adaptation from the Warburg effect to mitochondrial oxidative phosphorylation could contribute to thermoresistance in ovarian and uterine cancer cells.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Hipertermia Inducida , Neoplasias Ováricas/metabolismo , Neoplasias Uterinas/metabolismo , Línea Celular Tumoral , Metabolismo Energético/fisiología , Femenino , Glucólisis/fisiología , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Neoplasias Ováricas/terapia , Proteómica , Insuficiencia del Tratamiento , Neoplasias Uterinas/terapia
2.
J Immunother Cancer ; 8(1)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32041818

RESUMEN

BACKGROUND: Recently, antiprogrammed cell death protein 1 (aPD-1) and antiprogrammed death-ligand 1 (aPD-L1) monoclonal antibodies (mAbs) have been approved. Even though aPD-1 and aPD-L1 mAbs target the same PD-1/PD-L1 axis, it is still unclear whether both mAbs exert equivalent pharmacological activity in patients who are sensitive to PD-1/PD-L1 blockade therapy, as there is no direct comparison of their pharmacokinetics (PK) and antitumor effects. Therefore, we evaluated the differences between both mAbs in PK and therapeutic effects in PD-1/PD-L1 blockade-sensitive mouse models. METHODS: Herein, murine breast MM48 and colon MC38 xenografts were used to analyze the pharmacological activity of aPD-1 and aPD-L1 mAbs. The PK of the mAbs in the tumor-bearing mice was investigated at low and high doses using two radioisotopes (Indium-111 and Iodine-125) to evaluate the accumulation and degradation of the mAbs. RESULTS: aPD-1 mAb showed antitumor effect in a dose-dependent manner, indicating that the tumor model was sensitive to PD-1/PD-L1 blockade therapy, whereas aPD-L1 mAb failed to suppress tumor growth. The PK study showed that aPD-L1 mAb was accumulated largely in normal organs such as the spleen, liver, and kidney, resulting in low blood concentration and low distributions to tumors at a low dose, even though the tumors expressed PD-L1. Sufficient accumulation of aPD-L1 mAb in tumors was achieved by administration at a high dose owing to the saturation of target-mediated binding in healthy organs. However, degradation of aPD-L1 mAb in tumors was greater than that of aPD-1 mAb, which resulted in poor outcome presumably due to less inhibition of PD-L1 by aPD-L1 mAb than that of PD-1 by aPD-1 mAb. CONCLUSION: According to the PK studies, aPD-1 mAb showed linear PK, whereas aPD-L1 mAb showed non-linear PK between low and high doses. Collectively, the poor PK characteristics of aPD-L1 mAb caused lower antitumor activity than of aPD-1 mAb. These results clearly indicated that aPD-L1 mAb required higher doses than aPD-1 mAb in clinical setting. Thus, targeting of PD-1 would be more advantageous than PD-L1 in terms of PK.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacocinética , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Área Bajo la Curva , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Semivida , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Distribución Tisular
3.
Mol Cancer Ther ; 16(5): 966-976, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28223424

RESUMEN

Hyperthermia has been investigated as a potential treatment for cancer. However, specificity in hyperthermia application remains a significant challenge. Magnetic fluid hyperthermia (MFH) may be an alternative to surpass such a challenge, but implications of MFH at the cellular level are not well understood. Therefore, the present work focused on the examination of gene expression after MFH treatment and using such information to identify target genes that when inhibited could produce an enhanced therapeutic outcome after MFH. Genomic analyzes were performed using ovarian cancer cells exposed to MFH for 30 minutes at 43°C, which revealed that heat shock protein (HSP) genes, including HSPA6, were upregulated. HSPA6 encodes the Hsp70, and its expression was confirmed by PCR in HeyA8 and A2780cp20 ovarian cancer cells. Two strategies were investigated to inhibit Hsp70-related genes, siRNA and Hsp70 protein function inhibition by 2-phenylethyenesulfonamide (PES). Both strategies resulted in decreased cell viability following exposure to MFH. Combination index was calculated for PES treatment reporting a synergistic effect. In vivo efficacy experiments with HSPA6 siRNA and MFH were performed using the A2780cp20 and HeyA8 ovarian cancer mouse models. A significantly reduction in tumor growth rate was observed with combination therapy. PES and MFH efficacy were also evaluated in the HeyA8 intraperitoneal tumor model, and resulted in robust antitumor effects. This work demonstrated that HSP70 inhibition combination with MFH generate a synergistic effect and could be a promising target to enhance MFH therapeutic outcomes in ovarian cancer. Mol Cancer Ther; 16(5); 966-76. ©2017 AACR.


Asunto(s)
Proteínas HSP70 de Choque Térmico/genética , Hipertermia Inducida , Neoplasias Ováricas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Terapia Combinada , Femenino , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Humanos , Fenómenos Magnéticos , Ratones , Neoplasias Ováricas/patología , ARN Interferente Pequeño/genética
4.
Cell Rep ; 17(6): 1621-1631, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806300

RESUMEN

Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. CTGF silencing aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Hipertermia Inducida , Neoplasias Ováricas/metabolismo , Neoplasias Uterinas/metabolismo , Animales , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Genes Relacionados con las Neoplasias , Humanos , Ratones , Modelos Biológicos , Neoplasias Ováricas/genética , Proteómica , Neoplasias Uterinas/genética
5.
Int J Pharm ; 281(1-2): 25-33, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15288340

RESUMEN

Liposomes, coated with transferrin (Tf)-coupled polyethylene glycol are considered to be potent carriers for drug delivery to various organs via receptor-mediated endocytosis. Since Tf receptors were ubiquitously expressed in various organs, additional perturbation of the liposomes such as regulation of the size may be required to exhibit the tissue selectivity. In the present study, the effect of size on the uptake of transferrin-coupled polyethylene glycol liposomes (Tf-PEG-L) to various organs was investigated. In liver and brain, Tf-dependent uptake was found to be dependent on the size of the liposomes used. In small liposomes with a diameter of 60-80 nm, Tf-PEG-L was taken up to these organs more efficiently than PEG-L. This Tf-dependent uptake for small liposomes decreased by the high dose administration, suggested that Tf-PEG-L is taken up via Tf receptor-mediated endocytosis even under the physiological condition, in which plasma concentration of endogenous Tf remains high. On the other hand, Tf receptor-mediated uptake was also observed in the heart, but size-dependency was not observed in this case. Collectively, these results indicate that size dependency in the uptake of Tf-PEG-L is tissue-dependent and therefore, controlling the size of Tf-PEG-L may be useful for the success of tissue targeting.


Asunto(s)
Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Transferrina/administración & dosificación , Transferrina/farmacocinética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Colesterol/análogos & derivados , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Corazón/efectos de los fármacos , Inyecciones Intravenosas , Japón , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Liposomas , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos , Sistema Mononuclear Fagocítico/efectos de los fármacos , Sistema Mononuclear Fagocítico/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Tamaño de la Partícula , Receptores de Transferrina , Bazo/efectos de los fármacos , Bazo/metabolismo , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA