Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 43(5): 1012-1029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415986

RESUMEN

The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;43:1012-1029. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microbiota/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Hidrocarburos Policíclicos Aromáticos , Bacterias/genética , Biodegradación Ambiental , Agua de Mar/microbiología , Petróleo , Plancton/genética
2.
Biomed Res Int ; 2013: 703130, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23738330

RESUMEN

In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity with Geobacillus species and related genera, whilst one of them was identified as Aneurinibacillus sp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70-80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern.


Asunto(s)
Bacillus/aislamiento & purificación , Lipólisis , Temperatura , Erupciones Volcánicas , Bacillus/efectos de los fármacos , Bacillus/enzimología , Carbono/farmacología , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Cinética , Lipasa/biosíntesis , Lipólisis/efectos de los fármacos , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA