Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 13(1): 9195, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280217

RESUMEN

The Visual Word Form Area (VWFA) is a key region of the brain's reading network and its activation has been shown to be strongly associated with reading skills. Here, for the first time, we investigated whether voluntary regulation of VWFA activation is feasible using real-time fMRI neurofeedback. 40 adults with typical reading skills were instructed to either upregulate (UP group, N = 20) or downregulate (DOWN group, N = 20) their own VWFA activation during six neurofeedback training runs. The VWFA target region was individually defined based on a functional localizer task. Before and after training, also regulation runs without feedback ("no-feedback runs") were performed. When comparing the two groups, we found stronger activation across the reading network for the UP than the DOWN group. Further, activation in the VWFA was significantly stronger in the UP group than the DOWN group. Crucially, we observed a significant interaction of group and time (pre, post) for the no-feedback runs: The two groups did not differ significantly in their VWFA activation before neurofeedback training, but the UP group showed significantly stronger activation than the DOWN group after neurofeedback training. Our results indicate that upregulation of VWFA activation is feasible and that, once learned, successful upregulation can even be performed in the absence of feedback. These results are a crucial first step toward the development of a potential therapeutic support to improve reading skills in individuals with reading impairments.


Asunto(s)
Dislexia , Neurorretroalimentación , Autocontrol , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Neurorretroalimentación/métodos , Aprendizaje/fisiología , Mapeo Encefálico
2.
Addict Biol ; 28(1): e13261, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577730

RESUMEN

Tobacco smoking is associated with deleterious health outcomes. Most smokers want to quit smoking, yet relapse rates are high. Understanding neural differences associated with tobacco use may help generate novel treatment options. Several animal studies have recently highlighted the central role of the thalamus in substance use disorders, but this research focus has been understudied in human smokers. Here, we investigated associations between structural and functional magnetic resonance imaging measures of the thalamus and its subnuclei to distinct smoking characteristics. We acquired anatomical scans of 32 smokers as well as functional resting-state scans before and after a cue-reactivity task. Thalamic functional connectivity was associated with craving and dependence severity, whereas the volume of the thalamus was associated with dependence severity only. Craving, which fluctuates rapidly, was best characterized by differences in brain function, whereas the rather persistent syndrome of dependence severity was associated with both brain structural differences and function. Our study supports the notion that functional versus structural measures tend to be associated with behavioural measures that evolve at faster versus slower temporal scales, respectively. It confirms the importance of the thalamus to understand mechanisms of addiction and highlights it as a potential target for brain-based interventions to support smoking cessation, such as brain stimulation and neurofeedback.


Asunto(s)
Cese del Hábito de Fumar , Tabaquismo , Humanos , Tabaquismo/diagnóstico por imagen , Ansia/fisiología , Fumar , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen
3.
Neuroimage ; 237: 118207, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34048901

RESUMEN

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Asunto(s)
Neuroimagen Funcional , Aprendizaje Automático , Imagen por Resonancia Magnética , Neurorretroalimentación , Adulto , Humanos
4.
BMC Psychiatry ; 21(1): 87, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563242

RESUMEN

BACKGROUND: Several fMRI studies found hyperactivity in the hippocampus during pattern separation tasks in patients with Mild Cognitive Impairment (MCI; a prodromal stage of Alzheimer's disease). This was associated with memory deficits, subsequent cognitive decline, and faster clinical progression. A reduction of hippocampal hyperactivity with an antiepileptic drug improved memory performance. Pharmacological interventions, however, entail the risk of side effects. An alternative approach may be real-time fMRI neurofeedback, during which individuals learn to control region-specific brain activity. In the current project we aim to test the potential of neurofeedback to reduce hippocampal hyperactivity and thereby improve memory performance. METHODS: In a single-blind parallel-group study, we will randomize n = 84 individuals (n = 42 patients with MCI, n = 42 healthy elderly volunteers) to one of two groups receiving feedback from either the hippocampus or a functionally independent region. Percent signal change of the hemodynamic response within the respective target region will be displayed to the participant with a thermometer icon. We hypothesize that only feedback from the hippocampus will decrease hippocampal hyperactivity during pattern separation and thereby improve memory performance. DISCUSSION: Results of this study will reveal whether real-time fMRI neurofeedback is able to reduce hippocampal hyperactivity and thereby improve memory performance. In addition, the results of this study may identify predictors of successful neurofeedback as well as the most successful regulation strategies. TRIAL REGISTRATION: The study has been registered with clinicaltrials.gov on the 16th of July 2019 (trial identifier: NCT04020744 ).


Asunto(s)
Disfunción Cognitiva , Neurorretroalimentación , Anciano , Disfunción Cognitiva/terapia , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Ensayos Clínicos Controlados Aleatorios como Asunto , Método Simple Ciego
5.
Hum Brain Mapp ; 41(14): 3839-3854, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729652

RESUMEN

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética , Neurorretroalimentación/fisiología , Práctica Psicológica , Adulto , Humanos , Pronóstico
6.
EBioMedicine ; 37: 489-498, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30377073

RESUMEN

BACKGROUND: Enhanced drug-related reward sensitivity accompanied by impaired sensitivity to non-drug related rewards in the mesolimbic dopamine system are thought to underlie the broad motivational deficits and dysfunctional decision-making frequently observed in cocaine use disorder (CUD). Effective approaches to modify this imbalance and reinstate non-drug reward responsiveness are urgently needed. Here, we examined whether cocaine users (CU) can use mental imagery of non-drug rewards to self-regulate the ventral tegmental area and substantia nigra (VTA/SN). We expected that obsessive and compulsive thoughts about cocaine consumption would hamper the ability to self-regulate the VTA/SN activity and tested if real-time fMRI (rtfMRI) neurofeedback (NFB) can improve self-regulation of the VTA/SN. METHODS: Twenty-two CU and 28 healthy controls (HC) were asked to voluntarily up-regulate VTA/SN activity with non-drug reward imagery alone, or combined with rtfMRI NFB. RESULTS: On a group level, HC and CU were able to activate the dopaminergic midbrain and other reward regions with reward imagery. In CU, the individual ability to self-regulate the VTA/SN was reduced in those with more severe obsessive-compulsive drug use. NFB enhanced the effect of reward imagery but did not result in transfer effects at the end of the session. CONCLUSION: CU can voluntary activate their reward system with non-drug reward imagery and improve this ability with rtfMRI NFB. Combining mental imagery and rtFMRI NFB has great potential for modifying the maladapted reward sensitivity and reinstating non-drug reward responsiveness. This motivates further work to examine the use of rtfMRI NFB in the treatment of CUD.


Asunto(s)
Trastornos Relacionados con Cocaína , Imaginación , Imagen por Resonancia Magnética , Sustancia Negra , Área Tegmental Ventral , Adulto , Trastornos Relacionados con Cocaína/diagnóstico por imagen , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/psicología , Femenino , Humanos , Masculino , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/fisiopatología , Área Tegmental Ventral/diagnóstico por imagen , Área Tegmental Ventral/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA