Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharm Sci ; 112(3): 779-789, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36252652

RESUMEN

Polysorbate-80 (PS-80) is a common surfactant used in biologics formulations. However, the tendency of oxidation to PS-80 when exposed to stainless steel surfaces brings various challenges during manufacturing processes, such as inconsistent shelf-life of PS-80 solutions, which can further impact the biologics and vaccines production. In this work, the root causes of PS-80 oxidation when in contact with stainless steel conditions were thoroughly investigated through the use of various complementary analytical techniques including U/HPLC-CAD, LC-MS, ICP-MS, peroxide assay, and EPR spectroscopy. The analytical tool kit used in this work successfully revealed a PS-80 degradation mechanism from the perspective of PS-80 content, PS-80 profile, iron content, peroxide production, and radical species. The combined datasets reveal that PS-80 oxidative degradation occurs in the presence of histidine and iron in addition to being combined with the hydroperoxides in PS-80 material. The oxidative pathway and potential degradants were identified by LC-MS. The PS-80 profile based on the U/HPLC-CAD assay provided an effective way to identify early-signs of PS-80 degradation. The results from a peroxide assay observed increased hydroperoxide along with PS-80 degradation. EPR spectra confirmed the presence of histidine-related radicals during PS-80 oxidation identifying how histidine is involved in the oxidation. All assays and findings introduced in this work will provide insight into how PS-80 oxidative degradation can be avoided, controlled, or detected. It will also provide valuable evaluations on techniques that can be used to identify PS-80 degradation related events that occur during the manufacturing process.


Asunto(s)
Polisorbatos , Acero Inoxidable , Polisorbatos/química , Acero Inoxidable/química , Histidina/química , Oxidación-Reducción , Hierro , Peróxidos , Peróxido de Hidrógeno , Estrés Oxidativo
2.
MAbs ; 10(7): 945-950, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30130442

RESUMEN

For many protein therapeutics including monoclonal antibodies, aggregate removal process can be complex and challenging. We evaluated two different process analytical technology (PAT) applications that couple a purification unit performing preparative hydrophobic interaction chromatography (HIC) to a multi-angle light scattering (MALS) system. Using first principle measurements, the MALS detector calculates weight-average molar mass, Mw and can control aggregate levels in purification. The first application uses an in-line MALS to send start/stop fractionation trigger signals directly to the purification unit when preset Mw criteria are met or unmet. This occurs in real-time and eliminates the need for analysis after purification. The second application uses on-line ultra-high performance size-exclusion liquid chromatography to sample from the purification stream, separating the mAb species and confirming their Mw using a µMALS detector. The percent dimer (1.5%) determined by the on-line method is in agreement with the data from the in-line application (Mw increase of approximately 2750 Da). The novel HIC-MALS systems demonstrated here can be used as a powerful tool for real-time aggregate monitoring and control during biologics purification enabling future real time release of biotherapeutics.


Asunto(s)
Anticuerpos Monoclonales/química , Productos Biológicos/química , Terapia Biológica/métodos , Cromatografía/instrumentación , Dispersión Dinámica de Luz/métodos , Animales , Anticuerpos Monoclonales/metabolismo , Productos Biológicos/metabolismo , Técnicas de Química Analítica , Humanos , Peso Molecular , Agregación Patológica de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA