Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 18398, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526589

RESUMEN

Periodontal infection induces systemic inflammation; therefore, aggravating diabetes. Orally administered periodontal pathogens may directly alter the gut microbiota. We orally treated obese db/db diabetes mice using Porphyromonas gingivalis (Pg). We screened for Pg-specific peptides in the intestinal fecal specimens and examined whether Pg localization influenced the intestinal microbiota profile, in turn altering the levels of the gut metabolites. We evaluated whether the deterioration in fasting hyperglycemia was related to the changes in the intrahepatic glucose metabolism, using proteome and metabolome analyses. Oral Pg treatment aggravated both fasting and postprandial hyperglycemia (P < 0.05), with a significant (P < 0.01) increase in dental alveolar bone resorption. Pg-specific peptides were identified in fecal specimens following oral Pg treatment. The intestinal Pg profoundly altered the gut microbiome profiles at the phylum, family, and genus levels; Prevotella exhibited the largest increase in abundance. In addition, Pg-treatment significantly altered intestinal metabolite levels. Fasting hyperglycemia was associated with the increase in the levels of gluconeogenesis-related enzymes and metabolites without changes in the expression of proinflammatory cytokines and insulin resistance. Oral Pg administration induced gut microbiota changes, leading to entero-hepatic metabolic derangements, thus aggravating hyperglycemia in an obese type 2 diabetes mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Disbiosis/complicaciones , Disbiosis/microbiología , Microbioma Gastrointestinal , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Porphyromonas gingivalis/fisiología , Animales , Terapia Biológica , Biomarcadores , Glucemia , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Ayuno , Insulina/sangre , Ratones , Péptidos/metabolismo , Péptidos/farmacología , Periodontitis/complicaciones , Periodontitis/metabolismo , Periodontitis/microbiología , Periodontitis/terapia
2.
J Med Invest ; 64(1.2): 20-23, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28373623

RESUMEN

Citrus Sudachi is the special local product of Tokushima Prefecture, and over 98% of Sudachi consumed in Japan every year is produced in Tokushima Prefecture. In this study, we evaluated the function of sudachi peel extract (SPE) using an animal model of obesity. C57BL/6 mice were fed a high-fat diet containing 1% SPE powder. Treatment with SPE significantly decreased body weight compared to that of mice fed a high-fat diet. A significant difference in body weight was observed between the control and SPE groups from 7 weeks after the start of the experiment, the significant difference continued until the end of the 14-week experiment. Reduction of blood glucose levels following insulin administration in SPE-treated mice was grater than that in control mice. Determination of mRNA expression in adipose tissue showed that the expression level of TNF-α in the SPE group was significantly decreased compared to that on the control group. These results suggest that SPE potentially has the ability to attenuate body weight gain. J. Med. Invest. 64: 20-23, February, 2017.


Asunto(s)
Citrus , Dieta Alta en Grasa/efectos adversos , Aumento de Peso , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Citrus/química , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/genética , Aumento de Peso/efectos de los fármacos
3.
J Phys Chem A ; 115(31): 8721-30, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21710994

RESUMEN

The relativistic effects on absolute magnetic shielding tensors (σ(Se)) are explicitly evaluated for various selenium species (40 species) with the DFT(BLYP)-GIAO method. Calculations are performed under relativistic and nonrelativistic conditions with the Slater-type basis sets in ADF 2010 in the framework of ZORA, employing the optimized structures under nonrelativistic conditions at B3LYP of Gaussian 03. Quadruple zeta all electron with four polarization functions (QZ4Pae) are mainly applied to evaluate σ(Se). Ranges of the effect on diamagnetic (σ(d)(Se)), paramagnetic shielding tensors (σ(p)(Se)), and σ(d+p)(Se) (= σ(d)(Se) + σ(p)(Se)) are -24 to -20 ppm, -115 to -3 ppm, and -136 to -26 ppm, respectively. The spin-orbit terms (σ(so)(Se)) are evaluated to be 92-225 ppm with QZ4Pae, which clarifies the effect on total shielding tensors (σ(t)(Se) = σ(d+p)(Se) + σ(so)(Se)) to be -8 to 152 ppm, at the spin-orbit ZORA level. The calculated σ(t)(Se) values reproduced well the observed values.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Selenio/química
4.
J Org Chem ; 73(23): 9259-69, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18986205

RESUMEN

A set of new delta(Se) parameters is proposed as a standard for the planar (pl) orientational effect of p-YC(6)H(4) (Ar) in ArSeR, employing 9-(arylselanyl)triptycenes (1: p-YC(6)H(4)SeTpc). The Se-C(R) bond in ArSeR is placed on the Ar plane in pl and it is perpendicular to the plane in pd. Large upfield shifts are observed for Y = NMe(2), OMe, and Me (-22 to -6 ppm) and large downfield shifts for Y = COOEt, CN, and NO(2) (19-37 ppm), relative to Y = H, with small upfield and moderate downfield shifts by Y of halogens (-1 ppm for Y = F and 4 ppm for Y = Cl and Br). This must be the result of the p(Se)-pi(C(6)H(4))-p(Y) conjugation in 1 (pl). While the character of delta(Se) in 1 (pl) is very similar to that in 9-(arylselanyl)anthracenes (2 (pl)), it is very different from that of 1-(arylselanyl)anthraquinones (3 (pd)). Sets of delta(Se) of 1 and 2 must serve as the standard for pl and that of 3 does for pd in solutions. Structures of various ArSeR in solutions are determined from the viewpoint of the orientational effect based on the standard delta(Se) of 1-3. While the structure of 2-methyl-1-(arylselanyl)naphthalenes is concluded to be all pl in solutions, those of 8-chloro- and 8-bromo-1-(arylselanyl)naphthalenes are all pd, except for Y = COOEt, CN, and NO(2): The equilibrium between pd and pl contributes to those with Y = COOEt, CN, and NO(2). The structure of 1-(arylselanyl)naphthalenes changes depending on Y. The structures of ArSeMe and ArSeCOPh are shown to be pl and pd, respectively, in solutions. Those of ArSePh and ArSeAr seem to change depending on Y. delta(Se) of 1-3 are demonstrated to serve as the standard to determine the structures in solutions. The rules of thumb derived from the characters in delta(Se) for 1-3 are very useful to determine the structures of ArSeR in solutions, in addition to the analysis based on the plots.


Asunto(s)
Antracenos/química , Química Orgánica/métodos , Espectroscopía de Resonancia Magnética/métodos , Selenio/química , Aniones/química , Benceno/química , Modelos Químicos , Conformación Molecular , Naftalenos/química , Teoría Cuántica , Programas Informáticos , Estereoisomerismo
5.
Chemistry ; 14(18): 5645-55, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18446908

RESUMEN

(n)J(Se,Se) (n=1-4) nuclear couplings between Se atoms were analyzed by using molecular orbital (MO) theory as the first step to investigating the nature of bonded and nonbonded (n)J(Se,Se) interactions between Se atoms. The values were calculated by employing Slater-type triple xi basis sets at the DFT level, which were applied to structures optimized with the Gaussian 03 program. The contribution from each occupied MO (psi(i)) and psi(i)-->psi(a) (psi(a)=unoccupied MO) transition was evaluated separately. 1J(Se,Se) was calculated for the MeSeSeMe model compound, which showed a typical dependence on the torsion angle (phi(C(Me)SeSeC(Me))). This dependence explains the small values (< or =64 Hz) of 1Jobsd(Se,Se) observed for RSeSeR' and large values (330-380 Hz) of 1Jobsd(Se,Se) observed for 4-substituted naphtho[1,8-c,d]-1,2-diselenoles, which correspond to synperiplanar diselenides. The HOMO-->LUMO and HOMO-1-->LUMO transitions contribute the most to 1J(Se,Se) at phi=0 and 180 degrees to give large values of 1J(Se,Se), whereas various transitions contribute and cancel each other out at phi=90 degrees to give small values of 1J(Se,Se). Large 4Jobsd(Se,Se) values were also observed in the nonbonded Se...Se, Se...Se=O, and O=Se...Se=O interactions at naphthalene 1,8-positions. The Fermi contact (FC) term contributes significantly to 4J(Se,Se), whereas the paramagnetic spin-orbit (PSO) term contributes significantly to 1J(Se,Se). 2J(Se,Se) and 3J(Se,Se) were analyzed in a similar manner and a torsional angular dependence was confirmed for 3J(Se,Se). Depending on the structure, the main contribution to (n)J(Se,Se) (n=2, 3) is from the FC term, with a lesser contribution from the PSO term. Analysis of each transition enabled us to identify and clearly visualize the origin and mechanism of the couplings.


Asunto(s)
Selenio/química , Espectroscopía de Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA