Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 34(11): 3003-3010, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37997411

RESUMEN

We explored the relationship between climate factors (mean annual precipitation and mean annual temperature) and the contents and stoichiometry of soil carbon (C), nitrogen (N), and phosphorus (P) at different soil depths (0-5, 5-10, 10-20, 20-30, 30-50, 50-70, and 70-100 cm) temperate steppe of Longzhong. The results showed with the increases of soil depth, soil C, N contents, C:P, and N:P gradually decreased from 21.88 g·kg-1, 1.84 g·kg-1, 33.6 and 3.1 to 7.67 g·kg-1, 0.59 g·kg-1, 12.5 and 1.0, respectively. Soil C:N showed an increasing trend from 12.2 to 13.9, while soil P content remained stable with an average of 0.61 g·kg-1. Soil C, N, C:P, and N:P were significantly positively correlated with mean annual precipitation and negatively correlated with mean annual temperature. Soil P content and C:N were not correlated with mean annual precipita-tion and mean annual temperature. With the increases of soil depth, the total explanatory power of the changes in soil C, N and P contents by mean annual precipitation and mean annual temperature decreased and then increased, and that in soil C:P, N:P and C:N did not change significantly. The changes of soil C, N and P contents on the temperature steppe were mainly influenced by mean annual precipitation. The effects and relative contributions of mean annual precipitation and mean annual temperature on the variations of soil nutrient contents and stoichiometry of C, N and P differed at different soil depths.


Asunto(s)
Nitrógeno , Suelo , Temperatura , China , Nitrógeno/análisis , Carbono/análisis , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA