Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 163, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600506

RESUMEN

Photothermal immunotherapy is regarded as the ideal cancer therapeutic modality to against malignant solid tumors; however, its therapeutic benefits are often modest and require improvement. In this study, a thermoresponsive nanoparticle (BTN@LND) composed of a photothermal agent (PTA) and pyroptosis inducer (lonidamine) were developed to enhance immunotherapy applications. Specifically, our "two-step" donor engineering strategy produced the strong NIR-II-absorbing organic small-molecule PTA (BTN) that exhibited high NIR-II photothermal performance (ε1064 = 1.51 × 104 M-1 cm-1, η = 75.8%), and this facilitates the diagnosis and treatment of deep tumor tissue. Moreover, the fabricated thermally responsive lipid nanoplatform based on BTN efficiently delivered lonidamine to the tumor site and achieved spatiotemporal release triggered by the NIR-II photothermal effect. In vitro and in vivo experiments demonstrated that the NIR-II photothermal therapy (PTT)-mediated on-demand release of cargo effectively faciliated tumor cell pyroptosis, thereby intensifying the immunogenic cell death (ICD) process to promote antitumor immunotherapy. As a result, this intelligent component bearing photothermal and chemotherapy can maximally suppress the growth of tumors, thus providing a promising approach for pyroptosis/NIR-II PTT synergistic therapy against tumors.


Asunto(s)
Indazoles , Nanopartículas , Neoplasias , Humanos , Fototerapia , Piroptosis , Neoplasias/tratamiento farmacológico , Inmunoterapia , Línea Celular Tumoral
2.
Adv Healthc Mater ; 12(30): e2302099, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37666241

RESUMEN

Synergistic chemotherapy and photothermal therapy (PTT) have emerged as a promising anticancer paradigm to achieve expected therapeutic effects while mitigating side effects. However, the chemo/PTT combination therapy suffers from limited penetration depth, thermoresistance performance of tumor cells, and low drug bioavailability. Herein, multifunctional nanoparticles (BTP/DOX/2DG NPs) coloaded with near-infrared region II (NIR-II) light excitation donor-acceptor-donor (D-A-D) small molecules, doxorubicin (DOX), and 2-deoxy-d-glucose (2-DG) are developed for reinforced starvation/chemo/NIR-II PTT combination therapy. The synthesized phenylboronic acid (PBA)-modified water-soluble D-A-D molecule (BBT-TF-PBA) not only exhibits high binding ability to DOX and 2-DG through donor-acceptor coordination interactions PBA-diol bonds but also serves as a photoactive agent for NIR-II fluorescence imaging, NIR-II photoacoustic imaging, and NIR-II PTT. Under the acidic and oxidizing conditions in the tumor microenvironment, donor-acceptor coordination interactions and PBA-diol bond are decomposed, simultaneously releasing DOX and 2-DG from BTP/DOX/2DG NPs to achieve effective chemotherapy and starvation therapy. 2-DG also effectively inhibits the expression of heat shock protein and further enhances NIR-II PTT and chemotherapy efficiency. In vitro and in vivo experiments demonstrate the combination effect of BTP/DOX/2DG NPs for chemotherapy, NIR-II PTT, and starvation therapy.


Asunto(s)
Nanopartículas , Terapia Fototérmica , Fototerapia/métodos , Glucosa , Doxorrubicina/química , Desoxiglucosa , Nanopartículas/química , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA