Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Manage ; 347: 119116, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37757686

RESUMEN

Rainfall plays a crucial role in influencing the loss of agricultural diffuse pollution. The middle Yangtze River region is well-know for its humid climate and numerous agricultural activities. Thus, this study quantitatively analyzed the concentration and distribution of nitrogen (N) and phosphorus (P) load and loss in a major tributary of the middle Yangtze River under different rainfall patterns by using sampling analysis and SWAT model simulation. The total nitrogen (TN) and nitrate-nitrogen (NO3-) concentrations were 1.604-3.574 and 0.830-2.556 mg/L, respectively. The total phosphorous (TP) and Soluble Reactive Phosphorus (SRP) were 2-148 and 2-104 µg/L, respectively. The modeling results demonstrated that higher rainfall intensity led to greater load and loss flux of diffuse pollutant at the outlet. Organic nitrogen (ORGN) is the main nitrogen form transported from the subbasin to the reach, while organic phosphorus (ORGP) and inorganic phosphorus (INORGP) were transported at similar amounts. Under the condition of conventional rainfall, the outlet reaches mainly transported NO3-, and ORGN gradually increased when rainstorm events occurred. The ratio of INORGP to ORGP was relatively stable. During extreme rainfall event, rainfall is the dominant element of agricultural diffuse pollution. A strong positive correlation exists between rainfall intensity and pollution loss during rainstorms. Storm rain events were the main source of TN and TP losses. Few storm rain days generated pollutants that accounted for a large proportion of the total loss, and their impact on TP loss was significantly greater than that of TN. The influence of storm rain on TN is mainly the increase in runoff, while TP is sensitive to the runoff and sediment transport promoted by rainfall. By setting different precipitation scenarios, it was confirmed that under the same rainfall amount, short-term storm rain has the most significant impact on the TN load, whereas TP load may be influenced more by the combined effects of rainfall duration and intensity. Therefore, to reduce the impact of agricultural diffuse pollution, it is important to take targeted measures for the rainstorm days.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Ríos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Movimientos del Agua , Fósforo/análisis , Contaminantes Ambientales/análisis , Nitrógeno/análisis , Lluvia , China
2.
Sci Total Environ ; 846: 157483, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35870599

RESUMEN

Phosphorus is an integral component of marine biogeochemistry. This research investigated the environmental behavior of P in Laizhou Bay using high-resolution sampling, P fractionation, and isotherm adsorption. The total dissolved P (TDP) concentration ranged from 8.4 to 61.0 µg/L in the bay water, while total P (TP) concentration ranged from 311.6 to 654.5 mg/kg in the sediment. The TDP concentration in the water was high in the estuarine area of the Yellow River and the southwestern bay under the combined effects of riverine inputs, direct wastewater discharge, and limited water exchange ability. High TP concentrations in the sediment were observed near the mouth of the Yellow River and central bay, mainly due to the movement and settlement of fine suspended particles under the influence of ocean currents. The P in the bay sediment was predominantly in the calcium-bound fraction and was associated with small particles such as silt and clay. The equilibrium P concentration (EPC0) ranged from 1.6 to 131.4 µg/L, and P partition coefficient or buffer intensity (Kd) ranged from 104 L/kg to 880 L/kg. The EPC0 decreased from the northeastern to southwestern area, while Kd showed an inverse distribution; therefore, the southwestern bay sediment had high buffer intensity for external P loads. Additionally, ECP0 increased linearly, and Kd decreased with exchangeable P (Exc-P) and Fe-bound P (Fe-P) concentrations in the sediment, demonstrating that P sediment-water exchange in LZB was dominated by contributions from Exc-P and Fe-P. These results can aid the understanding of the P sources and geochemistry of coastal ecosystems, particularly sediment P release potential.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Bahías , China , Proteínas de Unión al ADN , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Fósforo/análisis , Ríos , Agua , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 806(Pt 1): 150540, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583074

RESUMEN

Phosphorus contamination in urbanized bays has been a major concern because the bay restoration is often hindered by complex P sources and behaviors. This study examined the spatiotemporal changes of P species and exchange potential in/between the water and sediment of the Jiaozhou Bay. The results indicated that dissolved P (TDP) and inorganic P (DIP) in the water ranged from 7.8-128.7 and 1.8-14.1 µg/L, respectively; while total P (TP) in the sediment ranged from 213.4-638.7 mg/kg. The TDP and DIP concentrations in the water were high in winter and low in summer, and generally decreased from northeastern or northern areas to southwestern or southern areas mainly due to phytoplankton bloom cycles and riverine and wastewater inputs. TP in the sediment was lower in the northwestern area due to solid dilution effect by the settlement of settled coarser suspended particles. Changes in aquatic geochemical conditions from rivers to bay caused P accumulation in estuarine sediment, with higher P partition in organic fraction (40%). Compared to the estuarine sediment, higher fractions of P were associated with carbonate (34%) and iron oxide (17%) minerals in the bay sediment. Equilibrium P concentrations at zero sorption (EPC0) were 4.1-149.8 µg/L, which was substantially higher than the DIP concentration, demonstrating P release potential from the sediment. In addition, the P release potential was high in the northeastern area while P partition coefficient or buffer intensity (Kd) was high in the northwestern area. EPC0 was significantly positively correlated with soluble and exchangeable P in the sediment while Kd was significantly negatively correlated. These results can provide improved insights into P behaviors in an urbanized bay, particularly the P release potential and spatiotemporal change.


Asunto(s)
Bahías , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Fósforo/análisis , Agua , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 55(10): 6783-6790, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33945265

RESUMEN

River delta-front estuaries (DEs) are vital interfaces for fluxes between terrestrial and marine environments. However, deep uncertainty exists in estimating the sedimentary pollutant flux from terrestrial environments in DEs due, in part, to a lack of direct measurements in these dynamic and complicated regions and uncertainty in the calculation method. Due to its high sediment content, the Yellow River (YR) has a strong ability to adsorb phosphorus; therefore, it reliably reflects estuarine sedimentary processes. Here, through the comprehensive analysis of field samples, monitoring data and remote sensing images, we conclude that riverine fine particles control the deltaic estuary pollution status and that particle size is the key factor. Based on the stable relationships between phosphorus and heavy metals, with r2 values of 0.990, 0.992, and 0.639 for As, Cd, and Cr, respectively, we estimated that the P flux reached 22.68 g/m2 yr in 2017. Analysis of the YR high-silt sediment load, which has a strong phosphorus adsorption ability and constitutes a substantial fraction of global fluvial sediment transport, revealed a negative correlation between the riverine sediment load and the estuarine phosphorus flux.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
5.
J Hazard Mater ; 416: 125710, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33862479

RESUMEN

The synergetic loss mechanism of heavy metals (HMs) and phosphorus (P), as well as the relationships between their different geochemical fractions remain unclear. This study employs field research, source identification and sedimentary geochemistry in Yellow River basin to investigate the internal mechanisms of the different geochemical fractions, terrestrial source signatures, and synergetic loss fluxes. The average contents of As, Cd, Cr, Cu, Pb, Zn and P in the basin were 8.29 mg/kg, 0.15 mg/kg, 47.52 mg/kg, 11.78 mg/kg, 10.65 mg/kg, 46.56 mg/kg and 578.78 mg/kg, respectively. Based on Pearson's correlation and redundancy analyses, the impact factors on the transport of HMs and P, and the internal relationships between different geochemical fractions were analyzed. According to the constant rate of supply (CRS) model, the terrestrial losses of As, Cd, Cr and Cu showed significant positive relationships with the TP flux, with r2 value of 0.981, 0.991, 0.996 and for 0.984, respectively. It has been proven that the extensive fine particles in the Yellow River basin carry a large amount of diffuse pollutants, thus ultimately increasing the estuarine pollutant load. This research provides new insights from the level of microscopic fractions to macroscopic fluxes to investigate the impacts of anthropogenic activity on regional environmental changes.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Metales Pesados/análisis , Fósforo , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
6.
Chemosphere ; 257: 127207, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32505949

RESUMEN

Mechanochemical methods with co-milling reagents have been widely used to degrade organic pollutants. In this study, calcium oxide and persulfate were employed as co-milling reagents in a mechanochemical process that showed highly effective degradation of hexachlorobenzene in contaminated soil. The influences of soil particle size and organic matter content were also investigated. The interaction between different factors was analyzed by response surface methodology, and a multi-variate regression equation was obtained relating the soil-to-oxidant mass ratio, rotation speed and organic matter content. The existence of SO4- and OH during the mechanochemical reaction was proved by the indirect detection of benzoquinone and p-hydroxybenzoic acid for the first time, providing a new method for testing free radicals in solid-phase reactions. Finally, a possible activation mechanism and hexachlorobenzene degradation pathway were proposed. This study successfully presents a mild degradation method in the field of hexachlorobenzene contaminated site remediation.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hexaclorobenceno/análisis , Contaminantes del Suelo/análisis , Compuestos de Calcio , Hexaclorobenceno/química , Oxidación-Reducción , Óxidos , Suelo/química
7.
Water Sci Technol ; 71(11): 1709-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26038937

RESUMEN

In this paper, the spatial changes and trends in non-point source (NPS) total phosphorus (TP) pollution were analyzed by land and non-land uses in the Songliao River Basin from 1986 to 2000 (14 years). A grid-based export coefficient model was used in the process of analysis based on to a geographic information system. The Songliao Basin is divided in four regions: Liaoning province, Jilin province (JL), Heilongjiang province and the eastern part of the Inner Mongolia (IM) Autonomous Region. Results indicated that the NPS phosphorus load caused by land use and non-land use increased steadily from 3.11×10(4) tons in 1986 to 3.49×10(4) tons in 2000. The southeastern region of the Songliao Plain was the most important NPS pollution contributor of all the districts. Although the TP load caused by land use decreased during the studied period in the Songliao River Basin, the contribution of land use to the TP load was dominant compared to non-land uses. The NPS pollution caused by non-land use steadily increased over the studied period. The IM Autonomous Region and JL province had the largest mean annual rate of change among all districts (more than 30%). In this area, livestock and poultry breeding had become one of the most important NPS pollution sources. These areas will need close attention in the future.


Asunto(s)
Monitoreo del Ambiente/métodos , Modelos Teóricos , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , China , Sistemas de Información Geográfica
8.
Environ Sci Pollut Res Int ; 22(20): 16173-83, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26070735

RESUMEN

Labile P, Fe, and sulfide with the high spatial resolution in sediment porewater of five sites (A-E) of Dianchi Lake (China) were measured at same locations using AgI/Chelex-100, Chelex-100, and ferrihydrite DGT (diffusive gradients in thin films) probes. DGT derived P/Fe/S concentrations in sediment porewater on millimeter or sub-millimeter scale in order to reveal the element remobilization process and the mechanism of "internal P-loading" of sediments in Dianchi Lake. Decomposition of alga biomass in the uppermost sediment layer and the reductive dissolution of Fe-bound P in the anoxic sediment were the two main processes causing P release. A dynamic numerical model-DIFS (DGT-induced flux in sediments) was used to assess sediment-P reactivity (capacity of solid pool and rate of transfer) and P release risk by kinetic parameter-T C (1089∼20,450 s), distribution coefficient-K d (167.09∼502.0 cm(3) g(-1)), resupply parameter-R (from 0.242 to 0.518), and changes of dissolved/sorbed concentration, R and M at the microzone of DGT/porewater/sediment.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Hierro/análisis , Fósforo/análisis , Sulfuros/análisis , China , Cinética , Lagos , Modelos Teóricos , Investigación , Resinas Sintéticas
9.
J Environ Manage ; 128: 138-43, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23732192

RESUMEN

The quantitative assessment of P contamination in sediments is a challenge due to sediment heterogeneity and the lacking of geochemical background or baseline levels. In this study, a procedure was proposed to determine the average P background level and P geochemical baseline level (GBL) and develop P geochemical baseline functions (GBF) for riverbed sediments of the Liao River Watershed (LRW). The LRW has two river systems - the Liao River System (LRS) and the Daliao River System (DRS). Eighty-eight samples were collected and analyzed for P, Al, Fe, Ca, organic matter, pH, and texture. The results show that Fe can be used as a better particle-size proxy to construct the GBF of P (P (mg/kg) = 39.98 + 166.19 × Fe (%), R(2) = 0.835, n = 66). The GBL of P was 675 mg/kg, while the average background level of P was 355 mg/kg. Noting that many large cities are located in the DRS watershed, most of the contaminated sites were located within the DRS and the riverbed sediments were more contaminated by P in the DRS watershed than in the LRS watershed. The geochemical background and baseline information of P are of great importance in managing P levels within the LRW.


Asunto(s)
Sedimentos Geológicos/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Aluminio/análisis , Calcio/análisis , China , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Concentración de Iones de Hidrógeno , Hierro/análisis , Ríos/química , Análisis Espacial , Contaminación del Agua/análisis
10.
Environ Monit Assess ; 179(1-4): 81-92, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20927645

RESUMEN

This paper presents the spatial and temporal characteristics of petroleum hydrocarbons (PH) in surficial sediments from the Songhuajiang River using the method of petroleum chemical fingerprinting. Twenty-four surface sediment samples were collected at 17 sites along the river from upstream to downstream in flood season (August 2005) and icebound season (December 2005) and were analyzed for PH including n-alkanes (C(16)-C(33)), isoprenoid alkanes (pristane and phytane), and unresolved complex mixture (UCM). The concentration of PH varied from 22.64 to 91.45 µg g( -1) dry sediment. n-alkanes with a carbon number from 16 to 33 were detected in all samples, and the UCM was the dominant composition for PH. The variability of the PH concentration was mostly influenced by external conditions, such as seasonal change and industrial area position, as well as internal sediment physicochemical properties, such as organic carbon and grain size. The concentration of hydrocarbons is higher in flood season than in icebound season and is higher upstream than downstream. The diagnostic ratios of specific hydrocarbons showed that the PH pollution comes from a combination of biogenic and petrogenic sources, and petrogenic input is dominant in icebound season relative to flood season. It also indicates that there is a clear terrigenous input of n-alkanes in flood season. Principal components analysis was used to study the composition and characteristics of PH in Songhuajiang River sediments and to assess the spatial and temporal distribution of their natural and anthropogenic sources.


Asunto(s)
Sedimentos Geológicos/química , Hidrocarburos Aromáticos/análisis , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Ríos , Estaciones del Año , Contaminación Química del Agua/estadística & datos numéricos
11.
J Hazard Mater ; 170(1): 278-85, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19477067

RESUMEN

Stream sediments play an important role in the transport and storage of phosphorus in the stream ecosystems. This research investigated the sorption and fraction of P in the sediments of a long-term seriously contaminated river, the Daliao river system, using isotherm sorption and selective sequentially extraction tests. Results indicated that the total content of P in the sediments was 479-1202 mg kg(-1), depending on iron content in the sediments. The content of potential bioavailable P, including soluble and loosely bound P, Al bound P, Fe bound P, and reductant soluble P was only 10-20% of total P in the sediments of the Hun river and Taizi river, while it was 40-55% in the sediments of the Daliao river, the downstream of the river system. Equilibrium phosphorus concentration without net P sorption (EPC(0)) was from 0.05 to 0.54 mg L(-1), with an increasing trend from upstream to downstream, indicating increasingly release potential. On the other hand, the upstream sediment generally sorbed more P than the downstream sediment for each river at the same equilibrium P concentration. The binding energy constant of P on the strong sites of the sediments generally decreased from 2.24 to 2.65 L mg(-1) at upstream to 0.41 L mg(-1) at downstream or estuary, suggesting that the strong binding sites have been occupied and partly saturated by the phosphate added by point and diffuse sources along the river. On the other hand, molar ratio of Fe to TP contents in the sediments showed sorption capacity of the sediments to P might be under-saturated. The added or sorbed P by the isotherm test was primarily bound to Fe oxides and secondly to Al oxides. Long-term pollution of the river lead to the decrease of P sorption capacity of the river sediment and the increase of P release potential.


Asunto(s)
Sedimentos Geológicos/química , Fósforo/aislamiento & purificación , Ríos/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Óxido de Aluminio , China , Restauración y Remediación Ambiental , Compuestos Férricos
12.
Huan Jing Ke Xue ; 30(3): 663-7, 2009 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-19432309

RESUMEN

With the development of point pollution control, non-point source pollution has become an important environmental and water quality management problem. Land cover composition across a watershed is a dominant factor in controlling the amount of nitrogen and phosphorus exported from a watershed. Generally, urban and agricultural land covers are considered as principal sources of excess loads of nitrogen (N) and phosphorous (P) in receiving waters. A well developed literature of nutrient export coefficients by land-cover class was used to model the risk of equaling or exceeding specified levels of nutrient export in drainage basin of Dahuofang Reservoir. The model was applied to about 513 comparatively small watersheds mapped for the drainage basin of Dahuofang Reservoir for environmental analysis and planning. The results suggest that the probabilities of risk are 19.31% and 8.95% for N and P nutrient respectively. As the spatial distribution concerned, risk estimates generally differed with different slope degrees and districts. Risk estimates generally increased from the places where lies near the rivers to the places where are far from the river, but numerous areas of high variability were evident.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , China , Agua Dulce/análisis , Medición de Riesgo , Ríos
13.
Huan Jing Ke Xue ; 30(12): 3494-501, 2009 Dec.
Artículo en Chino | MEDLINE | ID: mdl-20187377

RESUMEN

The Daliaohe river system in China has been seriously affected by long-term intensive industrial, urban and agricultural activities. The objective of this study was to determine the total phosphorus (TP) content and forms of phosphate in the sediments and investigate geochemical relationships between P forms and mineral matrix elements and P bioavailability. Four sediment profiles were taken in the Daliaohe river systems. TP content in the sediment was measured by ICP-OES and chemical forms of phosphate were measured by sequential selective extraction method. Results indicated that TP ranged from 323 to 2619 mg x kg(-1). In the sediments except 25-47 cm depth of sediment profile in the Hun river, the content of Ca bound P (Ca-P) was the highest, with more than 40% of TP. The contents of Fe bound P (Fe-P) and residual P (RES-P) were 15% to 25% of TP, while the contents of reductant soluble P (RS-P) and Al bound P (Al-P) were generally 5% to 10% of TP. However, the content of soluble and loosely bound P (S/L-P) was only less than 0.5% of TP. Huge accumulation of P in the 25-47 cm depth of the sediment profile in the Hun river led to a bigger increase in the contents of Fe-P and Al-P than Ca-P, where Al-P, Fe-P and Ca-P contents were 6.2%-23.4%, 19.6%-34.1% and 14.6%-35.6% of TP, respectively. Correlation analysis showed that sum of Fe-P and RS-P, Ca-P, and RES-P were positively correlated to Fe, Ca, and sediment organic matter (SOM) contents, respectively in the sediments except the 25-47 cm depth of sediment profile in the Hun river. In addition, TP content was positively correlated to Fe and SOM contents. The molar ratios of Fe to TP generally ranged from 20.9 to 33.9, indicating that most of sediments have capability to further retain P. Potential bioavailable P (BAP) including S/L-P, Al-P and Fe-P in the sediments was 85.43 to 1830.5 mg x kg(-1), and this part of phosphorus might pose a potential risk to the eutrophication of the Daliaohe river system and its estuary.


Asunto(s)
Agua Dulce/análisis , Sedimentos Geológicos/análisis , Fósforo/química , Contaminantes Químicos del Agua/química , China , Monitoreo del Ambiente , Fosfatos/análisis , Fósforo/análisis , Ríos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA