Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 845: 157278, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35835199

RESUMEN

The manure fertilizer increases the phosphorus (P) saturation of soils and the colloidal P release to water bodies. Manure of different particle-sizes may have different effects on colloidal P release by soil, and to date there is limited knowledge on colloidal P release from soils amended with different size manures. We produced sheep micro- (SMicro) and nano-manure (SNano), and poultry micro- (PMicro), nano-manure (PNano) from bulk samples by wet fractionation method. The fractionation reduced the P contents of micro- and nano-manures, and enriched them in ash and calcium, iron (Fe), magnesium, and aluminum (Al) phosphate minerals compared with the bulk manures. The degree of P saturation (DPS) in Anthorsol and Cambisol was decreased (SMicro, 17.6 and 17.2 %; SNano, 14.5 and 13.3 % and PMicro, 19.0 and 19.7 mg kg-1; PNano, 17.0 and 14.3 mg kg-1) and released less colloidal P (SMicro, 3.12 and 3.78 mg kg-1; SNano, 3.01 and 3.56 mg kg-1 and PMicro, 3.34 and 3.92 mg kg-1; PNano, 3.21 and 3.65 mg kg-1) than the soils receiving the bulk manures. The decrease in colloidal P was correlated with less DPS in both soils amended with micro and nano manures. That is, the only measurable effect of manure particle size on colloidal P release from the amended soils was due to chemical fractionation during separation of the size fractions. It was suggested that nano and micro manures were the effective approach to reduce colloidal P release from manure amended soils.


Asunto(s)
Estiércol , Suelo , Agricultura , Animales , Fertilizantes , Fósforo , Ovinos
2.
J Environ Manage ; 304: 114214, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34864519

RESUMEN

The agricultural use of manure fertilizer increases the phosphorus (P) saturation of soils and the risk of colloidal P (Pcoll) release to aquatic ecosystems. Two experiments were conducted to identify whether Pteris vittata plantation can decrease Pcoll contents in two soils (Cambisol and Anthrosol) amended with various manure P rates (0, 10, 25, and 50 mg P kg-1 of soil). The total Pcoll contents in manured soil without P. vittata were 1.14-3.37 mg kg-1 (Cambisol), and 0.01-2.83 mg kg-1 (Anthrosol) across manure-P rates. The corresponding values with P. vittata were 0.97-2.33 mg kg-1 (Cambisol) and 0.005-1.6 mg kg-1 (Anthrosol). Experimentally determined colloidal minerals (Fe, Al, Ca), colloidal total organic carbon, Mehlich-3 nutrients (Fe, Al, and Ca), and the degree of P saturation were good predictors of Pcoll concentrations in both soils with and without P. vittata plantation. In unplanted soils, P adsorption decreased and the degree of P saturation increased which released more Pcoll. However, P. vittata plantation decreased the Pcoll release and P loss risk due to the increase of P adsorption and reduced DPS in both soils. The P fractions (NaOH, NH4F, and HCl-P) contributed to increase the P pool in planted soils which enhanced the bioavailability of Pcoll and increased the P. vittata biomass. It suggested that P. vittata plantation was an effective approach to reduce Pcoll release from manure amended soils.


Asunto(s)
Estiércol , Pteris , Ecosistema , Fósforo , Suelo
3.
J Med Chem ; 64(1): 543-565, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33369415

RESUMEN

Analogues of the natural product cyclosporine A (CsA) were developed and assessed as antivirals against infection of hepatitis B virus (HBV) and its satellite hepatitis D virus (HDV). An analogue termed 27A exhibits potent inhibition of HBV/HDV infection by specifically blocking viral engagement to its cellular receptor NTCP, while it lacks immunosuppressive activity found in natural CsA. Intraperitoneal injection or oral intake of 27A protects HDV-susceptible mouse model from HDV infection. 27A serves as a promising lead for the development of novel anti-HDV/HBV agents.


Asunto(s)
Antivirales/uso terapéutico , Ciclosporina/uso terapéutico , Hepatitis B/tratamiento farmacológico , Hepatitis D/tratamiento farmacológico , Transportadores de Anión Orgánico Sodio-Dependiente/fisiología , Simportadores/fisiología , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Ciclosporina/administración & dosificación , Ciclosporina/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Células Hep G2 , Hepatitis B/fisiopatología , Hepatitis D/fisiopatología , Humanos , Ratones , Ratones Endogámicos C57BL
4.
Genes Genomics ; 42(2): 135-153, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782074

RESUMEN

BACKGROUND: The sugar will eventually be exported transporter (SWEET) family is a novel type of membrane-embedded sugar transporter that contains seven transmembrane helices with two MtN3/saliva domains. The SWEET family plays crucial roles in multiple processes, including carbohydrate transportation, development, environmental adaptability and host-pathogen interactions. Although SWEET genes, especially those involved in response to biotic stresses, have been extensively characterized in many plants, they have not yet been studied in potato. OBJECTIVE: The identification of StSWEET genes provides important candidates for further functional analysis and lays the foundation for the production of good quality and high yield potatoes through molecular breeding. METHODS: In this study, StSWEET genes were identified using a genome-wide search method. A comprehensive analysis of StSWEET family through bioinformatics methods, such as phylogenetic tree, gene structure and promoter prediction analysis. The expression profiles of StSWEET genes in different potato tissues and under P. infestans attack and sugar stress were studied using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Phylogenetic analysis classified 33 StSWEET genes into four groups containing 12, 5, 12 and 4 genes. Furthermore, the gene structures and conserved motifs found that the StSWEET genes are very conservative during evolution. The chromosomal localization pattern showed that the distribution and density of the StSWEETs on 10 potato chromosomes were uneven and basically clustered. Predictive promoter analysis indicated that StSWEET proteins are associated with cell growth, development, secondary metabolism, and response to biotic and abiotic stresses. Finally, the expression patterns of the StSWEET genes in different tissues and the induction of P. infestans and the process of the sugar stress were investigated to obtain the tissue-specific and stress-responsive candidates. CONCLUSION: This study systematically identifies the SWEET gene family in potato at the genome-wide level, providing important candidates for further functional analysis and contributing to a better understanding of the molecular basis of development and tolerance in potato.


Asunto(s)
Proteínas de Transporte de Monosacáridos/genética , Familia de Multigenes , Proteínas de Plantas/genética , Solanum tuberosum/genética , Mapeo Cromosómico , Genes de Plantas , Genoma de Planta , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/clasificación , Proteínas de Transporte de Monosacáridos/metabolismo , Filogenia , Phytophthora infestans , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Dominios Proteicos , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Estrés Fisiológico
5.
Environ Sci Pollut Res Int ; 25(26): 25780-25788, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29164458

RESUMEN

Converting swine manure to biochar is an effective way to recycle valuable nutrients, but there are few reports on its feasibility as a phosphorus (P) source. The objective of this study was to clarify the unique nature, including P speciation, of manure biochar products under various pyrolysis temperatures. We used solution 31P nuclear magnetic resonance and P K-edge X-ray adsorption near-edge spectroscopy (P XANES) to characterize P species in swine manure biochar. For every 100 °C increment starting from 300 °C, the P content in manure biochar increased by 2.16 to 3.37 g kg-1. However, above 400 °C, organic P species did not appear anymore, and only inorganic P, including orthophosphate and pyrophosphate, existed. P K-edge XANES spectra further showed all biochar samples had higher percentages of Ca3 (PO4)2 and NaP2O7, and lower percentages of FePO4, AlPO4, and inositol hexaphosphate compared to manure. Interestingly, percentages of Ca3(PO4)2, FePO4, and AlPO4 in MB400 (indicating manure pyrolysed at 400 °C) were comparable with those in MB700 while the percentage of NaP2O7 was higher in MB400. Phosphorus release from MB400 maintained a relatively high level at 0.33 g kg-1 during the whole 300-h observation period. These results suggest that with a suitable pyrolysis temperature, it was feasible for manure biochar to be a P source alternative. Graphical abstract ᅟ.


Asunto(s)
Carbón Orgánico , Estiércol , Fósforo/química , Porcinos , Temperatura , Adsorción , Animales , Cinética , Pirólisis , Suelo/química
6.
Chemosphere ; 142: 128-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26212669

RESUMEN

Using manure-derived-biochar as an alternative phosphorus (P) source has bright future prospects to improve soil P status. A 98-day microcosm incubation experiment was set up for two soils which were amended with manure biochar at proportions of 0, 0.5% and 1.5%. Swine manure samples were air-dried and manure biochar was prepared by pyrolysis at 400 °C for 4 h. As determined by P-31 nuclear magnetic resonance ((31)P NMR) spectroscopy, manure biochar mainly increased the contents and fractions of orthophosphate and pyrophosphate in two soils, while decreased those of monoesters (P<0.05). At the end of incubation, 1.5% of manure biochar raised soil pH by 0.5 and 0.6 units, cation exchange capacity by 16.9% and 32.2%, and soil total P by 82.1% and 81.1% for silt loam and clay loam soils, respectively, as compared with those soils without biochar. Simultaneously, 1.5% of manure biochar decreased acid phosphomonoesterase activities by 18.6% and 34.0% for clay loam and silt loam, respectively; while it increased alkaline phosphomonoesterase activities by 28.5% and 95.1% for clay loam and silt loam, respectively. The enhancement of soil P availability after manure biochar addition was firstly due to the orthophosphate and pyrophosphate as the major P species in manure biochar which directly increased contents of soil inorganic P, and also attributed to the decomposition of some organic P like monoesters by enhanced alkaline phosphomonoesterase activities from manure biochar addition.


Asunto(s)
Carbón Orgánico/química , Carbón Orgánico/farmacología , Estiércol/análisis , Monoéster Fosfórico Hidrolasas/metabolismo , Fósforo/química , Suelo/química , Animales , Porcinos
7.
Phytopathology ; 102(4): 413-20, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22150210

RESUMEN

Previously, oscillations in beet seedling damping-off by Pythium ultimum, measured as area under the disease progress curve (AUDPC), were demonstrated after incorporation of organic materials into organic and conventional soils. These periodic fluctuations of P. ultimum infections were cross-correlated with oscillations of copiotrophic CFU at lags of 2 to 4 days. For this article, we investigated whether bacterial communities and microbial activities fluctuated after a disturbance from incorporation of organic materials, and whether these fluctuations were linked to the short-term oscillations in AUDPC of beet seedling damping-off and bacterial populations (CFU) in soil. Soil microbial communities studied by polymerase chain reaction-DGGE analysis of 16S DNA after isolation of total DNA from soil and microbial activities measured as CO(2) emission rates were monitored daily for 14 days after addition of grass-clover (GC) or composted manure (CM) into organic versus conventional soils. Similar to our previous findings, AUDPC and density of copiotrophic bacteria oscillated with time. Fluctuations in species richness (S), Shannon diversity index (H), and individual amplicons on DGGE gels were also detected. Oscillations in AUDPC were positively cross-correlated with copiotrophic CFU in all soils. Oscillations in AUDPC were also positively cross-correlated with 19 to 35% of the high-intensity DNA fragments in soils amended with GC but only 2 to 3% of these fragments in CM-amended soils. AUDPC values were negatively cross-correlated with 13 to 17% of the amplicons with low average intensities in CM-amended soils, which were not correlated with densities of copiotrophic CFU. CO(2) emission rates had remarkable variations in the initial 7 days after either of the soil amendments but were not associated with daily changes in AUDPC. The results suggest that infection by P. ultimum is hampered by competition from culturable copiotrophic bacteria and some high-intensity DGGE amplicons, because AUDPC is cross-correlated with these variables at lags of 1 to 4 days. However, negative cross-correlations with low-intensity DNA fragments indicate that P. ultimum infection could also be suppressed by antagonistic bacteria with low densities that may be nonculturable species, especially in CM amended soil. The organic soil generally had lower AUDPC values, higher bacterial diversity, and negative cross-correlations between AUDPC and low-intensity DNA fragments (after CM amendment), indicating that specific bacteria that do not attain high densities may contribute to P. ultimum suppression in organic soils.


Asunto(s)
Beta vulgaris/microbiología , Enfermedades de las Plantas/parasitología , Pythium/fisiología , Beta vulgaris/parasitología , Beta vulgaris/fisiología , Dióxido de Carbono/análisis , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Plantones/microbiología , Suelo/química , Microbiología del Suelo , Factores de Tiempo
8.
Phytopathology ; 100(6): 593-600, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20465415

RESUMEN

Bacterial populations (CFU) have been shown to oscillate in wavelike patterns after nutrient impulses in previous studies. The amplitudes and periods of oscillations could possibly be used as indicators of soil health analogous to the stability and resilience of biological populations widely accepted as indicators for ecosystem health. Limited plant and animal disease outbreaks can also be viewed as a manifestation of a healthy soil ecosystem. Two pot experiments were carried out to verify whether damping-off of beet seedlings by Pythium ultimum, measured as area under the disease progress curve (AUDPC), fluctuated over time after incorporation of organic materials into organic versus conventional soils, and to investigate whether daily dynamics of AUDPCs were linked to the dynamics of microbial populations and chemical parameters. AUDPCs oscillated significantly over time when Pythium bioassays were initiated daily after addition of ground grass and clover shoots (GC) into unplanted soils. Similar oscillations with significant harmonics of AUDPC were also observed in composted manure (CM)-amended soils but with smaller amplitudes than in GC-amended soils. The AUDPC harmonics in amended soils had periods similar to those of CFU of copiotrophic bacteria. Cross-correlation analysis demonstrated that periodic fluctuations of P. ultimum infections (AUDPCs) did not coincide with those of copiotrophic CFU but were shifted in phase. It appears that competition or antagonism from some fast-growing bacteria influenced pathogen infections, because these bacterial populations were growing and dying. Soil chemical variables, including pH, dissolved organic carbon, and NO(3)(-)-N, and NH(4)(+)-N contents, changed significantly in the initial 7 days after a nutrient impulse into soils. These changes were cross-correlated with copiotrophic CFU with time lags of approximately 1 to 2 days but were seldom associated with daily changes in AUDPCs. Organically managed soils always had lower AUDPC ratios of amended to nonamended treatments, indicating that organic materials showed stronger suppressive abilities to P. ultimum in organic than in conventional soils. The oscillations in AUDPCs and copiotrophic CFU in amended organic soil also had smaller amplitudes than in amended conventional soil. These results suggested that organically managed soils had a greater resistance and resilience to the disturbance of the amendments and, therefore, could be considered healthier than conventionally managed soils.


Asunto(s)
Beta vulgaris/microbiología , Interacciones Huésped-Patógeno , Pythium/fisiología , Microbiología del Suelo , Suelo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Plantones/microbiología
9.
J Environ Sci (China) ; 19(12): 1474-81, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18277652

RESUMEN

A field experiment located in Taihu Lake Basin of China was conducted, by application of urea or a mixture of urea with manure, to elucidate the interception of nitrogen (N) export in a typical rice field through "zero-drainage water management" combined with sound irrigation, rainfall forecasting and field drying. N concentrations in floodwater rapidly declined before the first event of field drying after three split fertilizations, and subsequently tended to return to the background level. Before the first field drying, total particulate nitrogen (TPN) was the predominant N form in floodwater of plots with no N input, dissolved inorganic nitrogen (DIN) on plots that received urea only, and dissolved organic nitrogen (DON) on plots treated with the mixture of urea and manure. Thereafter TPN became the major form. No N export was found from the rice field, but total nitrogen (TN) of 15.8 kg/hm2 was remained, mainly due to soil N sorption. The results recommended the zero-drainage water management for full-scale areas for minimizing N export.


Asunto(s)
Agricultura/métodos , Fertilizantes/análisis , Nitrógeno/análisis , Oryza , Contaminantes Químicos del Agua/análisis , China , Estiércol , Fósforo , Potasio , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA